7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mitochondrial respiratory chain deficiency inhibits lysosomal hydrolysis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Mitochondria are key organelles for cellular metabolism, and regulate several processes including cell death and macroautophagy/autophagy. Here, we show that mitochondrial respiratory chain (RC) deficiency deactivates AMP-activated protein kinase (AMPK, a key regulator of energy homeostasis) signaling in tissue and in cultured cells. The deactivation of AMPK in RC-deficiency is due to increased expression of the AMPK-inhibiting protein FLCN (folliculin). AMPK is found to be necessary for basal lysosomal function, and AMPK deactivation in RC-deficiency inhibits lysosomal function by decreasing the activity of the lysosomal Ca 2+ channel MCOLN1 (mucolipin 1). MCOLN1 is regulated by phosphoinositide kinase PIKFYVE and its product PtdIns(3,5)P 2, which is also decreased in RC-deficiency. Notably, reactivation of AMPK, in a PIKFYVE-dependent manner, or of MCOLN1 in RC-deficient cells, restores lysosomal hydrolytic capacity. Building on these data and the literature, we propose that downregulation of the AMPK-PIKFYVE-PtdIns(3,5)P 2-MCOLN1 pathway causes lysosomal Ca 2+ accumulation and impaired lysosomal catabolism. Besides unveiling a novel role of AMPK in lysosomal function, this study points to the mechanism that links mitochondrial malfunction to impaired lysosomal catabolism, underscoring the importance of AMPK and the complexity of organelle cross-talk in the regulation of cellular homeostasis.

          Abbreviation: ΔΨ m: mitochondrial transmembrane potential; AMP: adenosine monophosphate; AMPK: AMP-activated protein kinase; ATG5: autophagy related 5; ATP: adenosine triphosphate; ATP6V0A1: ATPase, H+ transporting, lysosomal, V0 subbunit A1; ATP6V1A: ATPase, H+ transporting, lysosomal, V0 subbunit A; BSA: bovine serum albumin; CCCP: carbonyl cyanide-m-chlorophenylhydrazone; CREB1: cAMP response element binding protein 1; CTSD: cathepsin D; CTSF: cathepsin F; DMEM: Dulbecco’s modified Eagle’s medium; DMSO: dimethyl sulfoxide; EBSS: Earl’s balanced salt solution; ER: endoplasmic reticulum; FBS: fetal bovine serum; FCCP: carbonyl cyanide-p-trifluoromethoxyphenolhydrazone; GFP: green fluorescent protein; GPN: glycyl-L-phenylalanine 2-naphthylamide; LAMP1: lysosomal associated membrane protein 1; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MCOLN1/TRPML1: mucolipin 1; MEF: mouse embryonic fibroblast; MITF: melanocyte inducing transcription factor; ML1N*2-GFP: probe used to detect PtdIns(3,5)P 2 based on the transmembrane domain of MCOLN1; MTORC1: mechanistic target of rapamycin kinase complex 1; NDUFS4: NADH:ubiquinone oxidoreductase subunit S4; OCR: oxygen consumption rate; PBS: phosphate-buffered saline; pcDNA: plasmid cytomegalovirus promoter DNA; PCR: polymerase chain reaction; PtdIns3P: phosphatidylinositol-3-phosphate; PtdIns(3,5)P 2: phosphatidylinositol-3,5-bisphosphate; PIKFYVE: phosphoinositide kinase, FYVE-type zinc finger containing; P/S: penicillin-streptomycin; PVDF: polyvinylidene fluoride; qPCR: quantitative real time polymerase chain reaction; RFP: red fluorescent protein; RNA: ribonucleic acid; SDS-PAGE: sodium dodecyl sulfate polyacrylamide gel electrophoresis; shRNA: short hairpin RNA; siRNA: small interfering RNA; TFEB: transcription factor EB; TFE3: transcription factor binding to IGHM enhancer 3; TMRM: tetramethylrhodamine, methyl ester, perchlorate; ULK1: unc-51 like autophagy activating kinase 1; ULK2: unc-51 like autophagy activating kinase 2; UQCRC1: ubiquinol-cytochrome c reductase core protein 1; v-ATPase: vacuolar-type H+-translocating ATPase; WT: wild-type

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Mitochondria-lysosome contacts regulate mitochondrial fission via Rab7 GTP hydrolysis

          Both mitochondria and lysosomes are essential for maintaining cellular homeostasis, and dysfunction of both organelles has been observed in multiple diseases 1–4 . Mitochondria are highly dynamic and undergo fission and fusion to maintain a functional mitochondrial network, which drives cellular metabolism 5 . Lysosomes similarly undergo constant dynamic regulation by the RAB7 GTPase 1 , which cycles from an active GTP-bound state into an inactive GDP-bound state upon GTP hydrolysis. Here we have identified the formation and regulation of mitochondria–lysosome membrane contact sites using electron microscopy, structured illumination microscopy and high spatial and temporal resolution confocal live cell imaging. Mitochondria–lysosome contacts formed dynamically in healthy untreated cells and were distinct from damaged mitochondria that were targeted into lysosomes for degradation 6,7 . Contact formation was promoted by active GTP-bound lysosomal RAB7, and contact untethering was mediated by recruitment of the RAB7 GTPase-activating protein TBC1D15 to mitochondria by FIS1 to drive RAB7 GTP hydrolysis and thereby release contacts. Functionally, lysosomal contacts mark sites of mitochondrial fission, allowing regulation of mitochondrial networks by lysosomes, whereas conversely, mitochondrial contacts regulate lysosomal RAB7 hydrolysis via TBC1D15. Mitochondria–lysosome contacts thus allow bidirectional regulation of mitochondrial and lysosomal dynamics, and may explain the dysfunction observed in both organelles in various human diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mammalian Autophagy: How Does It Work?

            Autophagy is a conserved intracellular pathway that delivers cytoplasmic contents to lysosomes for degradation via double-membrane autophagosomes. Autophagy substrates include organelles such as mitochondria, aggregate-prone proteins that cause neurodegeneration and various pathogens. Thus, this pathway appears to be relevant to the pathogenesis of diverse diseases, and its modulation may have therapeutic value. Here, we focus on the cell and molecular biology of mammalian autophagy and review the key proteins that regulate the process by discussing their roles and how these may be modulated by posttranslational modifications. We consider the membrane-trafficking events that impact autophagy and the questions relating to the sources of autophagosome membrane(s). Finally, we discuss data from structural studies and some of the insights these have provided.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The LKB1 tumor suppressor negatively regulates mTOR signaling.

              Germline mutations in LKB1, TSC2, or PTEN tumor suppressor genes result in hamartomatous syndromes with shared tumor biological features. The recent observations of LKB1-mediated activation of AMP-activated protein kinase (AMPK) and AMPK inhibition of mTOR through TSC2 prompted us to examine the biochemical and biological relationship between LKB1 and mTOR regulation. Here, we report that LKB1 is required for repression of mTOR under low ATP conditions in cultured cells in an AMPK- and TSC2-dependent manner, and that Lkb1 null MEFs and the hamartomatous gastrointestinal polyps from Lkb1 mutant mice show elevated signaling downstream of mTOR. These findings position aberrant mTOR activation at the nexus of these germline neoplastic conditions and suggest the use of mTOR inhibitors in the treatment of Peutz-Jeghers syndrome.
                Bookmark

                Author and article information

                Journal
                Autophagy
                Autophagy
                KAUP
                kaup20
                Autophagy
                Taylor & Francis
                1554-8627
                1554-8635
                2019
                27 March 2019
                27 March 2019
                : 15
                : 9
                : 1572-1591
                Affiliations
                [a ]Institute of Cellular Biochemistry, University Medical Center Goettingen , Goettingen, Germany
                [b ]Doctoral Program in Molecular Medicine, Georg August University Goettingen , Goettingen, Germany
                [c ]International Max-Planck Research School in Neuroscience , Goettingen, Germany
                [d ]European Neuroscience Institute Goettingen, University Medical Center Goettingen and Max-Planck Society , Goettingen, Germany
                [e ]Doctoral Program in Molecular Biology of Cells, Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences, University of Goettingen , Goettingen, Germany
                [f ]Institute of Translational Medicine, University of Liverpool , Liverpool, UK
                Author notes
                CONTACT Nuno Raimundo nuno.raimundo@ 123456med.uni-goettingen.de Institute of Cellular Biochemistry, University Medical Center Goettingen , Goettingen, Germany
                Author information
                http://orcid.org/0000-0003-4606-5056
                http://orcid.org/0000-0003-2417-450X
                http://orcid.org/0000-0002-9139-9664
                http://orcid.org/0000-0002-1120-3079
                http://orcid.org/0000-0002-5827-902X
                http://orcid.org/0000-0001-6440-3763
                http://orcid.org/0000-0002-5988-9129
                Article
                1586256
                10.1080/15548627.2019.1586256
                6693470
                30917721
                20675137-3ecf-4589-8fc6-3d531477ccc4
                © 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License ( http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.

                History
                : 30 March 2018
                : 26 January 2019
                : 11 February 2019
                Page count
                Figures: 8, References: 79, Pages: 20
                Funding
                Funded by: Deutsche Forschungsgemeinschaft 10.13039/501100001659
                Award ID: SFB1190
                Funded by: Deutsche Forschungsgemeinschaft 10.13039/501100001659
                Award ID: SFB1190
                Funded by: H2020 European Research Council 10.13039/100010663
                Award ID: 337327
                This work was supported by the Deutsche Forschungsgemeinschaft [SFB1190]; H2020 European Research Council [337327].
                Categories
                Research Paper

                Molecular biology
                ampk,calcium,lysosomal ca2+,lysosomes,mcoln1,mitochondria,mitochondrial respiratory chain deficiency

                Comments

                Comment on this article