44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Nuclear genes involved in mitochondria-to-nucleus communication in breast cancer cells

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The interaction of nuclear and mitochondrial genes is an essential feature in maintenance of normal cellular function. Of 82 structural subunits that make up the oxidative phosphorylation system in the mitochondria, mitochondrial DNA (mtDNA) encodes 13 subunits and rest of the subunits are encoded by nuclear DNA. Mutations in mitochondrial genes encoding the 13 subunits have been reported in a variety of cancers. However, little is known about the nuclear response to impairment of mitochondrial function in human cells.

          Results

          We isolated a Rho 0 (devoid of mtDNA) derivative of a breast cancer cell line. Our study suggests that depletion of mtDNA results in oxidative stress, causing increased lipid peroxidation in breast cancer cells. Using a cDNA microarray we compared differences in the nuclear gene expression profile between a breast cancer cell line (parental Rho +) and its Rho 0 derivative impaired in mitochondrial function. Expression of several nuclear genes involved in cell signaling, cell architecture, energy metabolism, cell growth, apoptosis including general transcription factor TFIIH, v-maf, AML1, was induced in Rho 0 cells. Expression of several genes was also down regulated. These include phospholipase C, agouti related protein, PKC gamma, protein tyrosine phosphatase C, phosphodiestarase 1A (cell signaling), PIBF1, cytochrome p450, (metabolism) and cyclin dependent kinase inhibitor p19, and GAP43 (cell growth and differentiation).

          Conclusions

          Mitochondrial impairment in breast cancer cells results in altered expression of nuclear genes involved in signaling, cellular architecture, metabolism, cell growth and differentiation, and apoptosis. These genes may mediate the cross talk between mitochondria and the nucleus.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Genome-wide responses to mitochondrial dysfunction.

          Mitochondrial dysfunction can lead to diverse cellular and organismal responses. We used DNA microarrays to characterize the transcriptional responses to different mitochondrial perturbations in Saccharomyces cerevisiae. We examined respiratory-deficient petite cells and respiratory-competent wild-type cells treated with the inhibitors of oxidative phosphorylation antimycin, carbonyl cyanide m-chlorophenylhydrazone, or oligomycin. We show that respiratory deficiency, but not inhibition of mitochondrial ATP synthesis per se, induces a suite of genes associated with both peroxisomal activities and metabolite-restoration (anaplerotic) pathways that would mitigate the loss of a complete tricarboxylic acid cycle. The array data suggested, and direct microscopic observation of cells expressing a derivative of green fluorescent protein with a peroxisomal matrix-targeting signal confirmed, that respiratory deficiency dramatically induces peroxisome biogenesis. Transcript profiling of cells harboring null alleles of RTG1, RTG2, or RTG3, genes known to control signaling from mitochondria to the nucleus, suggests that there are multiple pathways of cross-talk between these organelles in yeast.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Crosstalk between nuclear and mitochondrial genomes.

            This review focuses on molecular mechanisms that underlie the communication between the nuclear and mitochondrial genomes in eukaryotic cells. These genomes interact in at least two ways. First, they contribute essential subunit polypeptides to important mitochondrial proteins; second, they collaborate in the synthesis and assembly of these proteins. The first type of interaction is important for the regulation of oxidative energy production. Isoforms of the nuclear-coded subunits of cytochrome c oxidase affect the catalytic functions of its mitochondrially coded subunits. These isoforms are differentially regulated by environmental and developmental signals and probably allow tissues to adjust their energy production to different energy demands. The second type of interaction requires the bidirectional flow of information between the nucleus and the mitochondrion. Communication from the nucleus to the mitochondrion makes use of proteins that are translated in the cytosol and imported by the mitochondrion. Communication from the mitochondrion to the nucleus involves metabolic signals and one or more signal transduction pathways that function across the inner mitochondrial membrane. An understanding of both types of interaction is important for an understanding of OXPHOS diseases and aging.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mitochondrial DNA in human malignancy.

              Alterations in expression of mitochondrial DNA (mtDNA)-encoded polypeptides required for oxidative phosphorylation and cellular ATP generation may be a general characteristic of cancer cells. Mitochondrial DNA has been proposed to be involved in carcinogenesis because of high susceptibility to mutations and limited repair mechanisms in comparison to nuclear DNA. Since mtDNA lacks introns, it has been suggested that most mutations will occur in coding sequences and subsequent accumulation of mutations may lead to tumor formation. The mitochondrial genome is dependent upon the nuclear genome for transcription, translation, replication and repair, but precise mechanisms for how the two genomes interact and integrate with each other are poorly understood. In solid tumors, elevated expression of mtDNA-encoded subunits of the mitochondrial electron respiratory chain may reflect mitochondrial adaptation to perturbations in cellular energy requirements. In this paper, we review mitochondrial genomic aberrations reported in solid tumors of the breast, colon, stomach, liver, kidney, bladder, head/neck and lung as well as for hematologic diseases such as leukemia, myelodysplastic syndrome and lymphoma. We include data for elevated expression of mtDNA-encoded electron respiratory chain subunits in breast, colon and liver cancers and also the mutations reported in cancers of the colon, stomach, bladder, head/neck and lung. Finally, we examine the role of reactive oxygen species (ROS) generated by mitochondria in the process of carcinogenesis.
                Bookmark

                Author and article information

                Journal
                Mol Cancer
                Molecular Cancer
                BioMed Central (London )
                1476-4598
                2002
                12 November 2002
                : 1
                : 6
                Affiliations
                [1 ]Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Bunting-Blaustein Cancer Research Building, 1650 Orleans Street, Room 143, Baltimore, MD 21231, USA
                [2 ]Present address: Department of Radiation Oncology, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA
                Article
                1476-4598-1-6
                10.1186/1476-4598-1-6
                149409
                12495447
                20682e83-f460-4218-92f5-ea34cde73da9
                Copyright © 2002 Delsite et al; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL.
                History
                : 31 October 2002
                : 12 November 2002
                Categories
                Research

                Oncology & Radiotherapy
                mitochondria,mitochondrial dna,nuclear genes,breast cancer,cancer
                Oncology & Radiotherapy
                mitochondria, mitochondrial dna, nuclear genes, breast cancer, cancer

                Comments

                Comment on this article