102
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Nanomedicine

      , ,
      New England Journal of Medicine
      Massachusetts Medical Society

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Nanocarriers as an emerging platform for cancer therapy.

          Nanotechnology has the potential to revolutionize cancer diagnosis and therapy. Advances in protein engineering and materials science have contributed to novel nanoscale targeting approaches that may bring new hope to cancer patients. Several therapeutic nanocarriers have been approved for clinical use. However, to date, there are only a few clinically approved nanocarriers that incorporate molecules to selectively bind and target cancer cells. This review examines some of the approved formulations and discusses the challenges in translating basic research to the clinic. We detail the arsenal of nanocarriers and molecules available for selective tumour targeting, and emphasize the challenges in cancer treatment.
            • Record: found
            • Abstract: found
            • Article: not found

            Understanding biophysicochemical interactions at the nano-bio interface.

            Rapid growth in nanotechnology is increasing the likelihood of engineered nanomaterials coming into contact with humans and the environment. Nanoparticles interacting with proteins, membranes, cells, DNA and organelles establish a series of nanoparticle/biological interfaces that depend on colloidal forces as well as dynamic biophysicochemical interactions. These interactions lead to the formation of protein coronas, particle wrapping, intracellular uptake and biocatalytic processes that could have biocompatible or bioadverse outcomes. For their part, the biomolecules may induce phase transformations, free energy releases, restructuring and dissolution at the nanomaterial surface. Probing these various interfaces allows the development of predictive relationships between structure and activity that are determined by nanomaterial properties such as size, shape, surface chemistry, roughness and surface coatings. This knowledge is important from the perspective of safe use of nanomaterials.
              • Record: found
              • Abstract: found
              • Article: not found

              Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance.

              Metal nanoshells are a class of nanoparticles with tunable optical resonances. In this article, an application of this technology to thermal ablative therapy for cancer is described. By tuning the nanoshells to strongly absorb light in the near infrared, where optical transmission through tissue is optimal, a distribution of nanoshells at depth in tissue can be used to deliver a therapeutic dose of heat by using moderately low exposures of extracorporeally applied near-infrared (NIR) light. Human breast carcinoma cells incubated with nanoshells in vitro were found to have undergone photothermally induced morbidity on exposure to NIR light (820 nm, 35 W/cm2), as determined by using a fluorescent viability stain. Cells without nanoshells displayed no loss in viability after the same periods and conditions of NIR illumination. Likewise, in vivo studies under magnetic resonance guidance revealed that exposure to low doses of NIR light (820 nm, 4 W/cm2) in solid tumors treated with metal nanoshells reached average maximum temperatures capable of inducing irreversible tissue damage (DeltaT = 37.4 +/- 6.6 degrees C) within 4-6 min. Controls treated without nanoshells demonstrated significantly lower average temperatures on exposure to NIR light (DeltaT < 10 degrees C). These findings demonstrated good correlation with histological findings. Tissues heated above the thermal damage threshold displayed coagulation, cell shrinkage, and loss of nuclear staining, which are indicators of irreversible thermal damage. Control tissues appeared undamaged.

                Author and article information

                Journal
                New England Journal of Medicine
                N Engl J Med
                Massachusetts Medical Society
                0028-4793
                1533-4406
                December 16 2010
                December 16 2010
                : 363
                : 25
                : 2434-2443
                Article
                10.1056/NEJMra0912273
                21158659
                206861a9-dbe5-4b95-8191-0ed12830134d
                © 2010
                History

                Comments

                Comment on this article

                Related Documents Log