8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Improving Trajectory Optimization using a Roadmap Framework

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We present an evaluation of several representative sampling-based and optimization-based motion planners, and then introduce an integrated motion planning system which incorporates recent advances in trajectory optimization into a sparse roadmap framework. Through experiments in 4 common application scenarios with 5000 test cases each, we show that optimization-based or sampling-based planners alone are not effective for realistic problems where fast planning times are required. To the best of our knowledge, this is the first work that presents such a systematic and comprehensive evaluation of state-of-the-art motion planners, which are based on a significant amount of experiments. We then combine different stand-alone planners with trajectory optimization. The results show that the combination of our sparse roadmap and trajectory optimization provides superior performance over other standard sampling-based planners combinations. By using a multi-query roadmap instead of generating completely new trajectories for each planning problem, our approach allows for extensions such as persistent control policy information associated with a trajectory across planning problems. Also, the sub-optimality resulting from the sparsity of roadmap, as well as the unexpected disturbances from the environment, can both be overcome by the real-time trajectory optimization process.

          Related collections

          Most cited references10

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Sampling-based Algorithms for Optimal Motion Planning

          During the last decade, sampling-based path planning algorithms, such as Probabilistic RoadMaps (PRM) and Rapidly-exploring Random Trees (RRT), have been shown to work well in practice and possess theoretical guarantees such as probabilistic completeness. However, little effort has been devoted to the formal analysis of the quality of the solution returned by such algorithms, e.g., as a function of the number of samples. The purpose of this paper is to fill this gap, by rigorously analyzing the asymptotic behavior of the cost of the solution returned by stochastic sampling-based algorithms as the number of samples increases. A number of negative results are provided, characterizing existing algorithms, e.g., showing that, under mild technical conditions, the cost of the solution returned by broadly used sampling-based algorithms converges almost surely to a non-optimal value. The main contribution of the paper is the introduction of new algorithms, namely, PRM* and RRT*, which are provably asymptotically optimal, i.e., such that the cost of the returned solution converges almost surely to the optimum. Moreover, it is shown that the computational complexity of the new algorithms is within a constant factor of that of their probabilistically complete (but not asymptotically optimal) counterparts. The analysis in this paper hinges on novel connections between stochastic sampling-based path planning algorithms and the theory of random geometric graphs.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            CHOMP: Covariant Hamiltonian optimization for motion planning

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Motion planning with sequential convex optimization and convex collision checking

                Bookmark

                Author and article information

                Journal
                05 November 2018
                Article
                1811.02044
                207cffaa-2ff3-4ec1-a706-02d8443d5350

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                2018 ICAPS Workshop on Planning and Robotics (PlanRob 2018)
                cs.RO

                Robotics
                Robotics

                Comments

                Comment on this article