16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Increased electrocatalyzed performance through dendrimer-encapsulated gold nanoparticles and carbon nanotube-assisted multiple bienzymatic labels: highly sensitive electrochemical immunosensor for protein detection.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A highly sensitive electrochemical carcinoembryonic antigen (CEA) immunosensor was fabricated by covalently immobilizing a monoclonal CEA antibody (anti-CEA, Ab(1)) and a mediator (thionine, Th) on a gold nanoparticle (AuNP)-encapsulated dendrimer (Den/AuNP). Multiwalled carbon nanotube (MWCNT)-supported secondary antibody (Ab(2))-conjugated multiple bienzymes, glucose oxidase (GOx), and horseradish peroxidase (HRP) (Ab(2)/MWCNT/GOx/HRP) were used as electrochemical labels. The highly sensitive detection was achieved by the increased HRP-electrocatalyzed reduction of hydrogen peroxide, which was locally generated by the enzyme GOx. The immunosensor surface was characterized using electrochemical impedance spectroscopy, atomic force microscopy, and quartz crystal microbalance techniques. The Den/AuNP and Ab(2)/MWCNT/GOx/HRP bioconjugates were characterized using high-resolution transmission electron microscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy. Cyclic voltammetry and square wave voltammetry techniques were used to monitor the increased electrocatalyzed reduction of hydrogen peroxide by HRP. The linear dynamic range and the detection limit were determined to be 10.0 pg/mL to 50.0 ng/mL and 4.4 ± 0.1 pg/mL, respectively. The validity of the immunosensor response was tested in various CEA-spiked human serum samples, and the results were compared to those of an enzyme-linked immunosorbent assay method.

          Related collections

          Author and article information

          Journal
          Anal. Chem.
          Analytical chemistry
          American Chemical Society (ACS)
          1520-6882
          0003-2700
          Feb 05 2013
          : 85
          : 3
          Affiliations
          [1 ] Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 305-764, South Korea.
          Article
          10.1021/ac303142e
          23289608
          20808b7b-941e-4ccd-a25e-4f4e0cb32724
          History

          Comments

          Comment on this article