47
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Comprehensive genomic analysis of malignant pleural mesothelioma identifies recurrent mutations, gene fusions and splicing alterations.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We analyzed transcriptomes (n = 211), whole exomes (n = 99) and targeted exomes (n = 103) from 216 malignant pleural mesothelioma (MPM) tumors. Using RNA-seq data, we identified four distinct molecular subtypes: sarcomatoid, epithelioid, biphasic-epithelioid (biphasic-E) and biphasic-sarcomatoid (biphasic-S). Through exome analysis, we found BAP1, NF2, TP53, SETD2, DDX3X, ULK2, RYR2, CFAP45, SETDB1 and DDX51 to be significantly mutated (q-score ≥ 0.8) in MPMs. We identified recurrent mutations in several genes, including SF3B1 (∼2%; 4/216) and TRAF7 (∼2%; 5/216). SF3B1-mutant samples showed a splicing profile distinct from that of wild-type tumors. TRAF7 alterations occurred primarily in the WD40 domain and were, except in one case, mutually exclusive with NF2 alterations. We found recurrent gene fusions and splice alterations to be frequent mechanisms for inactivation of NF2, BAP1 and SETD2. Through integrated analyses, we identified alterations in Hippo, mTOR, histone methylation, RNA helicase and p53 signaling pathways in MPMs.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal.

          The cBioPortal for Cancer Genomics (http://cbioportal.org) provides a Web resource for exploring, visualizing, and analyzing multidimensional cancer genomics data. The portal reduces molecular profiling data from cancer tissues and cell lines into readily understandable genetic, epigenetic, gene expression, and proteomic events. The query interface combined with customized data storage enables researchers to interactively explore genetic alterations across samples, genes, and pathways and, when available in the underlying data, to link these to clinical outcomes. The portal provides graphical summaries of gene-level data from multiple platforms, network visualization and analysis, survival analysis, patient-centric queries, and software programmatic access. The intuitive Web interface of the portal makes complex cancer genomics profiles accessible to researchers and clinicians without requiring bioinformatics expertise, thus facilitating biological discoveries. Here, we provide a practical guide to the analysis and visualization features of the cBioPortal for Cancer Genomics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human non-synonymous SNPs: server and survey.

            Human single nucleotide polymorphisms (SNPs) represent the most frequent type of human population DNA variation. One of the main goals of SNP research is to understand the genetics of the human phenotype variation and especially the genetic basis of human complex diseases. Non-synonymous coding SNPs (nsSNPs) comprise a group of SNPs that, together with SNPs in regulatory regions, are believed to have the highest impact on phenotype. Here we present a World Wide Web server to predict the effect of an nsSNP on protein structure and function. The prediction method enabled analysis of the publicly available SNP database HGVbase, which gave rise to a dataset of nsSNPs with predicted functionality. The dataset was further used to compare the effect of various structural and functional characteristics of amino acid substitutions responsible for phenotypic display of nsSNPs. We also studied the dependence of selective pressure on the structural and functional properties of proteins. We found that in our dataset the selection pressure against deleterious SNPs depends on the molecular function of the protein, although it is insensitive to several other protein features considered. The strongest selective pressure was detected for proteins involved in transcription regulation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The immune epitope database (IEDB) 3.0

              The IEDB, www.iedb.org, contains information on immune epitopes—the molecular targets of adaptive immune responses—curated from the published literature and submitted by National Institutes of Health funded epitope discovery efforts. From 2004 to 2012 the IEDB curation of journal articles published since 1960 has caught up to the present day, with >95% of relevant published literature manually curated amounting to more than 15 000 journal articles and more than 704 000 experiments to date. The revised curation target since 2012 has been to make recent research findings quickly available in the IEDB and thereby ensure that it continues to be an up-to-date resource. Having gathered a comprehensive dataset in the IEDB, a complete redesign of the query and reporting interface has been performed in the IEDB 3.0 release to improve how end users can access this information in an intuitive and biologically accurate manner. We here present this most recent release of the IEDB and describe the user testing procedures as well as the use of external ontologies that have enabled it.
                Bookmark

                Author and article information

                Journal
                Nat. Genet.
                Nature genetics
                Springer Nature
                1546-1718
                1061-4036
                Apr 2016
                : 48
                : 4
                Affiliations
                [1 ] Division of Thoracic Surgery, The Lung Center and the International Mesothelioma Program, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.
                [2 ] Bioinformatics and Computational Biology Department, Genentech, Inc., South San Francisco, California, USA.
                [3 ] Molecular Biology Department, Genentech, Inc., South San Francisco, California, USA.
                [4 ] Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.
                [5 ] Bioinformatics Department, MedGenome Labs, Pvt., Ltd., Narayana Health City, Bangalore, India.
                [6 ] Division of Thoracic Surgery, Baylor College of Medicine, Houston, Texas, USA.
                [7 ] Molecular Oncology Department, Genentech, Inc., South San Francisco, California, USA.
                Article
                ng.3520
                10.1038/ng.3520
                26928227
                20841a9f-c043-435d-b031-151cbc73671e

                Comments

                Comment on this article