18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The performance of phylogenetic algorithms in estimating haplotype genealogies with migration.

      1 , ,
      Molecular ecology
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Genealogies estimated from haplotypic genetic data play a prominent role in various biological disciplines in general and in phylogenetics, population genetics and phylogeography in particular. Several software packages have specifically been developed for the purpose of reconstructing genealogies from closely related, and hence, highly similar haplotype sequence data. Here, we use simulated data sets to test the performance of traditional phylogenetic algorithms, neighbour-joining, maximum parsimony and maximum likelihood in estimating genealogies from nonrecombining haplotypic genetic data. We demonstrate that these methods are suitable for constructing genealogies from sets of closely related DNA sequences with or without migration. As genealogies based on phylogenetic reconstructions are fully resolved, but not necessarily bifurcating, and without reticulations, these approaches outperform widespread 'network' constructing methods. In our simulations of coalescent scenarios involving panmictic, symmetric and asymmetric migration, we found that phylogenetic reconstruction methods performed well, while the statistical parsimony approach as implemented in TCS performed poorly. Overall, parsimony as implemented in the PHYLIP package performed slightly better than other methods. We further point out that we are not making the case that widespread 'network' constructing methods are bad, but that traditional phylogenetic tree finding methods are applicable to haplotypic data and exhibit reasonable performance with respect to accuracy and robustness. We also discuss some of the problems of converting a tree to a haplotype genealogy, in particular that it is nonunique.

          Related collections

          Author and article information

          Journal
          Mol. Ecol.
          Molecular ecology
          Wiley-Blackwell
          1365-294X
          0962-1083
          May 2011
          : 20
          : 9
          Affiliations
          [1 ] Zoological Institute, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland.
          Article
          10.1111/j.1365-294X.2011.05066.x
          21457168
          208422c3-6886-401b-9372-d27d4cb272e3
          History

          Comments

          Comment on this article