10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      DGKζ deficiency protects against peripheral insulin resistance and improves energy metabolism

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d3855335e197">Diacylglycerol kinases (DGKs) regulate the balance between diacylglycerol (DAG) and phosphatidic acid. DGKζ is highly abundant in skeletal muscle and induces fiber hypertrophy. We hypothesized that DGKζ influences functional and metabolic adaptations in skeletal muscle and whole-body fuel utilization. DAG content was increased in skeletal muscle and adipose tissue, but unaltered in liver of DGKζ KO mice. Linear growth, body weight, fat mass, and lean mass were reduced in DGKζ KO versus wild-type mice. Conversely, male DGKζ KO and wild-type mice displayed a similar robust increase in plantaris weight after functional overload, suggesting that DGKζ is dispensable for muscle hypertrophy. Although glucose tolerance was similar, insulin levels were reduced in high-fat diet (HFD)-fed DGKζ KO versus wild-type mice. Submaximal insulin-stimulated glucose transport and p-Akt Ser <sup>473</sup> were increased, suggesting enhanced skeletal muscle insulin sensitivity. Energy homeostasis was altered in DGKζ KO mice, as evidenced by an elevated respiratory exchange ratio, independent of altered physical activity or food intake. In conclusion, DGKζ deficiency increases tissue DAG content and leads to modest growth retardation, reduced adiposity, and protection against insulin resistance. DGKζ plays a role in the control of growth and metabolic processes, further highlighting specialized functions of DGK isoforms in type 2 diabetes pathophysiology. </p>

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Signaling pathways controlling skeletal muscle mass

          The molecular mechanisms underlying skeletal muscle maintenance involve interplay between multiple signaling pathways. Under normal physiological conditions, a network of interconnected signals serves to control and coordinate hypertrophic and atrophic messages, culminating in a delicate balance between muscle protein synthesis and proteolysis. Loss of skeletal muscle mass, termed “atrophy”, is a diagnostic feature of cachexia seen in settings of cancer, heart disease, chronic obstructive pulmonary disease, kidney disease, and burns. Cachexia increases the likelihood of death from these already serious diseases. Recent studies have further defined the pathways leading to gain and loss of skeletal muscle as well as the signaling events that induce differentiation and post-injury regeneration, which are also essential for the maintenance of skeletal muscle mass. In this review, we summarize and discuss the relevant recent literature demonstrating these previously undiscovered mediators governing anabolism and catabolism of skeletal muscle.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Skeletal Muscle Triglycerides, Diacylglycerols, and Ceramides in Insulin Resistance

            OBJECTIVE Chronic exercise and obesity both increase intramyocellular triglycerides (IMTGs) despite having opposing effects on insulin sensitivity. We hypothesized that chronically exercise-trained muscle would be characterized by lower skeletal muscle diacylglycerols (DAGs) and ceramides despite higher IMTGs and would account for its higher insulin sensitivity. We also hypothesized that the expression of key skeletal muscle proteins involved in lipid droplet hydrolysis, DAG formation, and fatty-acid partitioning and oxidation would be associated with the lipotoxic phenotype. RESEARCH DESIGN AND METHODS A total of 14 normal-weight, endurance-trained athletes (NWA group) and 7 normal-weight sedentary (NWS group) and 21 obese sedentary (OBS group) volunteers were studied. Insulin sensitivity was assessed by glucose clamps. IMTGs, DAGs, ceramides, and protein expression were measured in muscle biopsies. RESULTS DAG content in the NWA group was approximately twofold higher than in the OBS group and ~50% higher than in the NWS group, corresponding to higher insulin sensitivity. While certain DAG moieties clearly were associated with better insulin sensitivity, other species were not. Ceramide content was higher in insulin-resistant obese muscle. The expression of OXPAT/perilipin-5, adipose triglyceride lipase, and stearoyl-CoA desaturase protein was higher in the NWA group, corresponding to a higher mitochondrial content, proportion of type 1 myocytes, IMTGs, DAGs, and insulin sensitivity. CONCLUSIONS Total myocellular DAGs were markedly higher in highly trained athletes, corresponding with higher insulin sensitivity, and suggest a more complex role for DAGs in insulin action. Our data also provide additional evidence in humans linking ceramides to insulin resistance. Finally, this study provides novel evidence supporting a role for specific skeletal muscle proteins involved in intramyocellular lipids, mitochondrial oxidative capacity, and insulin resistance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Diacylglycerol, when simplicity becomes complex.

              Diacylglycerol (DAG) has unique functions as a basic component of membranes, an intermediate in lipid metabolism and a key element in lipid-mediated signaling. In eukaryotes, for example, impaired DAG generation and/or consumption have severe effects on organ development and cell growth associated with diseases such as cancer, diabetes, immune system disorders and Alzheimer's disease. Although DAG has been studied intensively as a signaling lipid, early models of its function are no longer adequate to explain its numerous roles. The interplay between enzymes that control DAG levels, the identification of families of DAG-regulated proteins, and the overlap among DAG metabolic and signaling processes are providing new interpretations of DAG function. Recent discoveries are also delineating the complex and strategic role of DAG in regulating biochemical networks.
                Bookmark

                Author and article information

                Journal
                Journal of Lipid Research
                J. Lipid Res.
                American Society for Biochemistry & Molecular Biology (ASBMB)
                0022-2275
                1539-7262
                December 01 2017
                December 2017
                December 2017
                October 24 2017
                : 58
                : 12
                : 2324-2333
                Article
                10.1194/jlr.M079723
                5711495
                29066466
                2092fa42-7bd6-4dd1-8c06-c0ea8b1d6d5e
                © 2017
                History

                Comments

                Comment on this article