2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Engineering stable Zn-MnO2 batteries by synergistic stabilization between the carbon nanofiber core and birnessite-MnO2 nanosheets shell

      , , , , ,
      Chemical Engineering Journal
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references89

          • Record: found
          • Abstract: found
          • Article: not found

          Towards greener and more sustainable batteries for electrical energy storage.

          Ever-growing energy needs and depleting fossil-fuel resources demand the pursuit of sustainable energy alternatives, including both renewable energy sources and sustainable storage technologies. It is therefore essential to incorporate material abundance, eco-efficient synthetic processes and life-cycle analysis into the design of new electrochemical storage systems. At present, a few existing technologies address these issues, but in each case, fundamental and technological hurdles remain to be overcome. Here we provide an overview of the current state of energy storage from a sustainability perspective. We introduce the notion of sustainability through discussion of the energy and environmental costs of state-of-the-art lithium-ion batteries, considering elemental abundance, toxicity, synthetic methods and scalability. With the same themes in mind, we also highlight current and future electrochemical storage systems beyond lithium-ion batteries. The complexity and importance of recycling battery materials is also discussed.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Pseudocapacitive oxide materials for high-rate electrochemical energy storage

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Reversible aqueous zinc/manganese oxide energy storage from conversion reactions

                Bookmark

                Author and article information

                Journal
                Chemical Engineering Journal
                Chemical Engineering Journal
                Elsevier BV
                13858947
                February 2021
                February 2021
                : 405
                : 126969
                Article
                10.1016/j.cej.2020.126969
                209d99db-dc67-4f6f-8d4d-ff0248ec12d5
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://www.elsevier.com/open-access/userlicense/1.0/

                History

                Comments

                Comment on this article