2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Synthesis of Ultrathin Si Nanosheets from Natural Clays for Lithium-Ion Battery Anodes.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Two-dimensional Si nanosheets have been studied as a promising candidate for lithium-ion battery anode materials. However, Si nanosheets reported so far showed poor cycling performances and required further improvements. In this work, we utilize inexpensive natural clays for preparing high quality Si nanosheets via a one-step simultaneous molten salt-induced exfoliation and chemical reduction process. This approach produces high purity mesoporous Si nanosheets in high yield. As a control experiment, two-step process (pre-exfoliated silicate sheets and subsequent chemical reduction) cannot sustain their original two-dimensional structure. In contrast, one-step method results in a production of 5 nm-thick highly porous Si nanosheets. Carbon-coated Si nanosheet anodes exhibit a high reversible capacity of 865 mAh g(-1) at 1.0 A g(-1) with an outstanding capacity retention of 92.3% after 500 cycles. It also delivers high rate capability, corresponding to a capacity of 60% at 20 A g(-1) compared to that of 2.0 A g(-1). Furthermore, the Si nanosheet electrodes show volume expansion of only 42% after 200 cycles.

          Related collections

          Author and article information

          Journal
          ACS Nano
          ACS nano
          American Chemical Society (ACS)
          1936-086X
          1936-0851
          Feb 23 2016
          : 10
          : 2
          Affiliations
          [1 ] Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 689-798, South Korea.
          Article
          10.1021/acsnano.5b07977
          26789405

          Comments

          Comment on this article