22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Inclusion of sainfoin (Onobrychis viciifolia) silage in dairy cow rations affects nutrient digestibility, nitrogen utilization, energy balance, and methane emissions.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sainfoin (Onobrychis viciifolia) is a tanniniferous legume forage that has potential nutritional and health benefits preventing bloating, reducing nematode larval establishment, improving N utilization, and reducing greenhouse gas emissions. However, the use of sainfoin as a fodder crop in dairy cow rations in northwestern Europe is still relatively unknown. The objective of this study was to evaluate the effect of sainfoin silage on nutrient digestibility, animal performance, energy and N utilization, and CH4 production. Six rumen-cannulated, lactating dairy cows with a metabolic body weight (BW(0.75)) of 132.5±3.6kg were randomly assigned to either a control (CON) or a sainfoin (SAIN)-based diet over 2 experimental periods of 25 d each in a crossover design. The CON diet was a mixture of grass silage, corn silage, concentrate, and linseed. In the SAIN diet, 50% of grass silage dry matter (DM) of the CON diet was exchanged for sainfoin silage. The cows were adapted to 95% of ad libitum feed intake for a 21-d period before being housed in climate-controlled respiration chambers for 4 d, during which time feed intake, apparent total-tract digestibility, N and energy balance, and CH4 production was determined. Data were analyzed using a mixed model procedure. Total daily DM, organic matter, and neutral detergent fiber intake did not differ between the 2 diets. The apparent digestibility of DM, organic matter, neutral detergent fiber, and acid detergent fiber were, respectively, 5.7, 4.0, 15.7, and 14.8% lower for the SAIN diet. Methane production per kilogram of DM intake was lowest for the SAIN diet, CH4 production as a percentage of gross energy intake tended to be lower, and milk yield was greater for the SAIN diet. Nitrogen intake, N retention, and energy retained in body protein were greater for the SAIN than for the CON diet. Nitrogen retention as a percentage of N intake tended to be greater for the SAIN diet. These results suggest that inclusion of sainfoin silage in dairy cow rations reduces CH4 per kilogram of DM intake and nutrient digestibility. Moreover, sainfoin silage improves milk production and seems to redirect metabolism toward body protein accretion at the expense of body fat.

          Related collections

          Author and article information

          Journal
          J. Dairy Sci.
          Journal of dairy science
          American Dairy Science Association
          1525-3198
          0022-0302
          May 2016
          : 99
          : 5
          Affiliations
          [1 ] Animal Nutrition Group, Wageningen University, PO Box 338, 6700 AH Wageningen, the Netherlands. Electronic address: huyen.nguyen@wur.nl.
          [2 ] Parasitology and Aquatic Diseases, University of Copenhagen, 1870 Frederiksberg C, Denmark.
          [3 ] Animal Nutrition Group, Wageningen University, PO Box 338, 6700 AH Wageningen, the Netherlands.
          [4 ] Animal Nutrition Group, Wageningen University, PO Box 338, 6700 AH Wageningen, the Netherlands; Department of Farm Animal Health, Utrecht University, PO Box 80.163, 3508 TD Utrecht, the Netherlands.
          Article
          S0022-0302(16)00164-8
          10.3168/jds.2015-10583
          26898288
          20a7228e-3535-42cc-950b-0fb39b9921e7
          History

          digestibility,methane production,nitrogen utilization,sainfoin silage

          Comments

          Comment on this article