40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Chrysolina herbacea Modulates Terpenoid Biosynthesis of Mentha aquatica L.

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Interactions between herbivorous insects and plants storing terpenoids are poorly understood. This study describes the ability of Chrysolina herbacea to use volatiles emitted by undamaged Mentha aquatica plants as attractants and the plant's response to herbivory, which involves the production of deterrent molecules. Emitted plant volatiles were analyzed by GC-MS. The insect's response to plant volatiles was tested by Y-tube olfactometer bioassays. Total RNA was extracted from control plants, mechanically damaged leaves, and leaves damaged by herbivores. The terpenoid quantitative gene expressions (qPCR) were then assayed. Upon herbivory, M. aquatica synthesizes and emits (+)-menthofuran, which acts as a deterrent to C. herbacea. Herbivory was found to up-regulate the expression of genes involved in terpenoid biosynthesis. The increased emission of (+)-menthofuran was correlated with the upregulation of (+)-menthofuran synthase.

          Related collections

          Most cited references84

          • Record: found
          • Abstract: found
          • Article: not found

          Defensive function of herbivore-induced plant volatile emissions in nature.

          Herbivore attack is known to increase the emission of volatiles, which attract predators to herbivore-damaged plants in the laboratory and agricultural systems. We quantified volatile emissions from Nicotiana attenuata plants growing in natural populations during attack by three species of leaf-feeding herbivores and mimicked the release of five commonly emitted volatiles individually. Three compounds (cis-3-hexen-1-ol, linalool, and cis-alpha-bergamotene) increased egg predation rates by a generalist predator; linalool and the complete blend decreased lepidopteran oviposition rates. As a consequence, a plant could reduce the number of herbivores by more than 90% by releasing volatiles. These results confirm that indirect defenses can operate in nature.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Multiple stress factors and the emission of plant VOCs.

            Individual biotic and abiotic stresses, such as high temperature, high light and herbivore attack, are well known to increase the emission of volatile organic compounds from plants. Much less is known about the effect of multiple, co-occurring stress factors, despite the fact that multiple stresses are probably the rule under natural conditions. Here, after briefly summarizing the basic effects of single stress factors on the volatile emission of plants, we survey the influence of multiple stresses. When two or more stresses co-occur their effects are sometimes additive, while in other cases the influence of one stress has priority. Further investigations on the effects of multiple stress factors will improve our understanding of the patterns and functions of plant volatile emission. Copyright 2010 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Volatile signaling in plant-plant interactions: "talking trees" in the genomics era.

              Plants may "eavesdrop" on volatile organic compounds (VOCs) released by herbivore-attacked neighbors to activate defenses before being attacked themselves. Transcriptome and signal cascade analyses of VOC-exposed plants suggest that plants eavesdrop to prime direct and indirect defenses and to hone competitive abilities. Advances in research on VOC biosynthesis and perception have facilitated the production of plants that are genetically "deaf" to particular VOCs or "mute" in elements of their volatile vocabulary. Such plants, together with advances in VOC analytical instrumentation, will allow researchers to determine whether fluency enhances the fitness of plants in natural communities.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                9 March 2011
                : 6
                : 3
                : e17195
                Affiliations
                [1]Plant Physiology Unit, Department of Plant Biology, University of Turin, Innovation Centre, Turin, Italy
                Instituto de Biología Molecular y Celular de Plantas, Spain
                Author notes

                Conceived and designed the experiments: MEM SAZ. Performed the experiments: SAZ CMB SB AO GG. Analyzed the data: MEM SAZ GG. Contributed reagents/materials/analysis tools: MEM. Wrote the paper: MEM SAZ.

                Article
                PONE-D-10-03456
                10.1371/journal.pone.0017195
                3052309
                21408066
                20ab995f-1d97-44fc-b17e-cae67fc842e0
                Atsbaha Zebelo et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 18 October 2010
                : 23 January 2011
                Page count
                Pages: 10
                Categories
                Research Article
                Biology
                Ecology
                Chemical Ecology
                Genomics
                Genome Expression Analysis
                Plant Science
                Plant Biochemistry
                Secondary Metabolism
                Plant Pathology
                Plant Pests
                Plant Genomics
                Zoology
                Animal Behavior
                Entomology
                Chemistry
                Analytical Chemistry
                Applied Chemistry
                Chemical Biology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article