14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      GGCX-Associated Phenotypes: An Overview in Search of Genotype-Phenotype Correlations

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Gamma-carboxylation, performed by gamma-glutamyl carboxylase (GGCX), is an enzymatic process essential for activating vitamin K-dependent proteins (VKDP) with important functions in various biological processes. Mutations in the encoding GGCX gene are associated with multiple phenotypes, amongst which vitamin K-dependent coagulation factor deficiency (VKCFD1) is best known. Other patients have skin, eye, heart or bone manifestations. As genotype–phenotype correlations were never described, literature was systematically reviewed in search of patients with at least one GGCX mutation with a phenotypic description, resulting in a case series of 47 patients. Though this number was too low for statistically valid correlations—a frequent problem in orphan diseases—we demonstrate the crucial role of the horizontally transferred transmembrane domain in developing cardiac and bone manifestations. Moreover, natural history suggests ageing as the principal determinant to develop skin and eye symptoms. VKCFD1 symptoms seemed more severe in patients with both mutations in the same protein domain, though this could not be linked to a more perturbed coagulation factor function. Finally, distinct GGCX functional domains might be dedicated to carboxylation of very specific VKDP. In conclusion, this systematic review suggests that there indeed may be genotype–phenotype correlations for GGCX-related phenotypes, which can guide patient counseling and management.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: not found
          • Article: not found

          Williams-Beuren syndrome.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2.

            Coumarin derivatives such as warfarin represent the therapy of choice for the long-term treatment and prevention of thromboembolic events. Coumarins target blood coagulation by inhibiting the vitamin K epoxide reductase multiprotein complex (VKOR). This complex recycles vitamin K 2,3-epoxide to vitamin K hydroquinone, a cofactor that is essential for the post-translational gamma-carboxylation of several blood coagulation factors. Despite extensive efforts, the components of the VKOR complex have not been identified. The complex has been proposed to be involved in two heritable human diseases: combined deficiency of vitamin-K-dependent clotting factors type 2 (VKCFD2; Online Mendelian Inheritance in Man (OMIM) 607473), and resistance to coumarin-type anticoagulant drugs (warfarin resistance, WR; OMIM 122700). Here we identify, by using linkage information from three species, the gene vitamin K epoxide reductase complex subunit 1 (VKORC1), which encodes a small transmembrane protein of the endoplasmic reticulum. VKORC1 contains missense mutations in both human disorders and in a warfarin-resistant rat strain. Overexpression of wild-type VKORC1, but not VKORC1 carrying the VKCFD2 mutation, leads to a marked increase in VKOR activity, which is sensitive to warfarin inhibition.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genetic dissection of TAM receptor-ligand interaction in retinal pigment epithelial cell phagocytosis.

              Although TAM receptor tyrosine kinases play key roles in immune regulation, cancer metastasis, and viral infection, the relative importance of the two TAM ligands-Gas6 and Protein S-has yet to be resolved in any setting in vivo. We have now performed a genetic dissection of ligand function in the retina, where the TAM receptor Mer is required for the circadian phagocytosis of photoreceptor outer segments by retinal pigment epithelial cells. This process is severely attenuated in Mer mutant mice, which leads to photoreceptor death. We find that retinal deletion of either Gas6 or Protein S alone yields retinae with a normal number of photoreceptors. However, concerted deletion of both ligands fully reproduces the photoreceptor death seen in Mer mutants. These results demonstrate that Protein S and Gas6 function as independent, bona fide Mer ligands, and are, to a first approximation, interchangeable with respect to Mer-driven phagocytosis in the retina.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                25 January 2017
                February 2017
                : 18
                : 2
                : 240
                Affiliations
                Center for Medical Genetics Ghent, Ghent University Hospital, Ghent 9000, Belgium; eva.devilder@ 123456ugent.be (E.Y.G.D.V.); jensm.debacker@ 123456ugent.be (J.D.)
                Author notes
                [* ]Correspondence: olivier.vanakker@ 123456ugent.be ; Tel.: +32-932-36-03
                Article
                ijms-18-00240
                10.3390/ijms18020240
                5343777
                28125048
                20b23a5e-4f7a-40eb-817e-c986e8eb96d7
                © 2017 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 31 October 2016
                : 13 January 2017
                Categories
                Review

                Molecular biology
                gamma-carboxylation,ggcx,cutis laxa,pseudoxanthoma elasticum,vkcfd1,elastic fibers
                Molecular biology
                gamma-carboxylation, ggcx, cutis laxa, pseudoxanthoma elasticum, vkcfd1, elastic fibers

                Comments

                Comment on this article