6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Selective nitrogen adsorption via backbonding in a metal–organic framework with exposed vanadium sites

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: not found
          • Article: not found

          Seven chemical separations to change the world

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hydrocarbon separations in a metal-organic framework with open iron(II) coordination sites.

            The energy costs associated with large-scale industrial separation of light hydrocarbons by cryogenic distillation could potentially be lowered through development of selective solid adsorbents that operate at higher temperatures. Here, the metal-organic framework Fe(2)(dobdc) (dobdc(4-) : 2,5-dioxido-1,4-benzenedicarboxylate) is demonstrated to exhibit excellent performance characteristics for separation of ethylene/ethane and propylene/propane mixtures at 318 kelvin. Breakthrough data obtained for these mixtures provide experimental validation of simulations, which in turn predict high selectivities and capacities of this material for the fractionation of methane/ethane/ethylene/acetylene mixtures, removal of acetylene impurities from ethylene, and membrane-based olefin/paraffin separations. Neutron powder diffraction data confirm a side-on coordination of acetylene, ethylene, and propylene at the iron(II) centers, while also providing solid-state structural characterization of the much weaker interactions of ethane and propane with the metal.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A metal-organic framework-based splitter for separating propylene from propane

              The chemical industry is dependent on the olefin/paraffin separation, which is mainly accomplished by using energy-intensive processes. We report the use of reticular chemistry for the fabrication of a chemically stable fluorinated metal-organic framework (MOF) material (NbOFFIVE-1-Ni, also referred to as KAUST-7). The bridging of Ni(II)-pyrazine square-grid layers with (NbOF5)(2-) pillars afforded the construction of a three-dimensional MOF, enclosing a periodic array of fluoride anions in contracted square-shaped channels. The judiciously selected bulkier (NbOF5)(2-) caused the looked-for hindrance of the previously free-rotating pyrazine moieties, delimiting the pore system and dictating the pore aperture size and its maximum opening. The restricted MOF window resulted in the selective molecular exclusion of propane from propylene at atmospheric pressure, as evidenced through multiple cyclic mixed-gas adsorption and calorimetric studies.
                Bookmark

                Author and article information

                Journal
                Nature Materials
                Nat. Mater.
                Springer Science and Business Media LLC
                1476-1122
                1476-4660
                February 3 2020
                Article
                10.1038/s41563-019-0597-8
                32015534
                20b5a913-3bd0-41d2-b54b-ee552c6ff8b4
                © 2020

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article