16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Leptin Modulates Norepinephrine-Mediated Melatonin Synthesis in Cultured Rat Pineal Gland

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pineal melatonin synthesis can be modulated by many peptides, including insulin. Because melatonin appears to alter leptin synthesis, in this work we aimed to investigate whether leptin would have a role on norepinephrine- (NE-)mediated melatonin synthesis in cultured rat pineal glands. According to our data, cultured rat pineal glands express leptin receptor isoform b ( Ob-Rb). Pineal expression of Ob-Rb mRNA was also observed in vivo. Administration of leptin (1 nM) associated with NE (1  µM) reduced melatonin content as well as arylalkylamine-N-acetyl transferase (AANAT) activity and expression in cultured pineal glands. Leptin treatment per se induced the expression of STAT3 in cultured pineal glands, but STAT3 does not participate in the leptin modulation of NE-mediated pineal melatonin synthesis. In addition, the expression of inducible cAMP early repressor (ICER) was further induced by leptin challenge when associated with NE. In conclusion, leptin inhibition of pineal melatonin synthesis appears to be mediated by a reduction in AANAT activity and expression as well as by increased expression of Icer mRNA. Peptidergic signaling within the pineal gland appears to be one of the most important signals which modulates melatonin synthesis; leptin, as a member of this system, is not an exception.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Region-specific leptin resistance within the hypothalamus of diet-induced obese mice.

          Leptin resistance in diet-induced obese (DIO) mice is characterized by elevated serum leptin and a decreased response to exogenous leptin and is caused by unknown defects in the central nervous system. Leptin normally acts on several brain nuclei, but a detailed description of leptin resistance within individual brain regions has not been reported. We first mapped leptin-responsive cells in brains from DIO mice using phospho-signal transducer and activator of transcription (P-STAT3) immunohistochemistry. After 16 wk of high-fat-diet feeding, leptin-activated P-STAT3 staining within the arcuate nucleus (ARC) was dramatically decreased. In contrast, other hypothalamic and extrahypothalamic nuclei remained leptin sensitive. Reduced leptin-induced P-STAT3 in the ARC could also be detected after 4 wk and as early as 6 d of a high-fat diet. To examine potential mechanisms for leptin-resistant STAT3 activation in the ARC of DIO mice, we measured mRNA levels of candidate signaling molecules in the leptin receptor-STAT3 pathway. We found that the level of suppressor of cytokine signaling 3 (SOCS-3), an inhibitor of leptin signaling, is specifically increased in the ARC of DIO mice. The study suggests that the ARC is selectively leptin resistant in DIO mice and that this may be caused by elevated suppressor of cytokine signaling 3 in this hypothalamic nucleus. Defects in leptin action in the ARC may play a role in the pathogenesis of leptin-resistant obesity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Generation of the melatonin endocrine message in mammals: a review of the complex regulation of melatonin synthesis by norepinephrine, peptides, and other pineal transmitters.

            Melatonin, the major hormone produced by the pineal gland, displays characteristic daily and seasonal patterns of secretion. These robust and predictable rhythms in circulating melatonin are strong synchronizers for the expression of numerous physiological processes in photoperiodic species. In mammals, the nighttime production of melatonin is mainly driven by the circadian clock, situated in the suprachiasmatic nucleus of the hypothalamus, which controls the release of norepinephrine from the dense pineal sympathetic afferents. The pivotal role of norepinephrine in the nocturnal stimulation of melatonin synthesis has been extensively dissected at the cellular and molecular levels. Besides the noradrenergic input, the presence of numerous other transmitters originating from various sources has been reported in the pineal gland. Many of these are neuropeptides and appear to contribute to the regulation of melatonin synthesis by modulating the effects of norepinephrine on pineal biochemistry. The aim of this review is firstly to update our knowledge of the cellular and molecular events underlying the noradrenergic control of melatonin synthesis; and secondly to gather together early and recent data on the effects of the nonadrenergic transmitters on modulation of melatonin synthesis. This information reveals the variety of inputs that can be integrated by the pineal gland; what elements are crucial to deliver the very precise timing information to the organism. This also clarifies the role of these various inputs in the seasonal variation of melatonin synthesis and their subsequent physiological function.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Melatonin: a multitasking molecule.

              Melatonin (N-acetyl-5-methoxytryptamine) has revealed itself as an ubiquitously distributed and functionally diverse molecule. The mechanisms that control its synthesis within the pineal gland have been well characterized and the retinal and biological clock processes that modulate the circadian production of melatonin in the pineal gland are rapidly being unravelled. A feature that characterizes melatonin is the variety of mechanisms it employs to modulate the physiology and molecular biology of cells. While many of these actions are mediated by well-characterized, G-protein coupled melatonin receptors in cellular membranes, other actions of the indole seem to involve its interaction with orphan nuclear receptors and with molecules, for example calmodulin, in the cytosol. Additionally, by virtue of its ability to detoxify free radicals and related oxygen derivatives, melatonin influences the molecular physiology of cells via receptor-independent means. These uncommonly complex processes often make it difficult to determine specifically how melatonin functions to exert its obvious actions. What is apparent, however, is that the actions of melatonin contribute to improved cellular and organismal physiology. In view of this and its virtual absence of toxicity, melatonin may well find applications in both human and veterinary medicine.
                Bookmark

                Author and article information

                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi Publishing Corporation
                2314-6133
                2314-6141
                2013
                1 July 2013
                : 2013
                : 546516
                Affiliations
                Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Avenue Professor Lineu Prestes 1524, Room 118, 05508-900 São Paulo, SP, Brazil
                Author notes
                *Rodrigo Antonio Peliciari-Garcia: rodrigousp@ 123456gmail.com

                Academic Editor: Christian-Heinz Anderwald

                Article
                10.1155/2013/546516
                3713337
                23936817
                20b9ad0b-d45b-480f-99c3-d8b60c9494c7
                Copyright © 2013 Rodrigo Antonio Peliciari-Garcia et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 23 April 2013
                : 10 June 2013
                : 13 June 2013
                Categories
                Research Article

                Comments

                Comment on this article