39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Adipose-derived mesenchymal stromal cells modulate tendon fibroblast responses to macrophage-induced inflammation in vitro

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Macrophage-driven inflammation is a key feature of the early period following tendon repair, but excessive inflammation has been associated with poor clinical outcomes. Modulation of the inflammatory environment using molecular or cellular treatments may provide a means to enhance tendon healing.

          Methods

          To examine the effect of pro-inflammatory cytokines secreted by macrophages on tendon fibroblasts (TF), we established in vitro models of cytokine and macrophage-induced inflammation. Gene expression, protein expression, and cell viability assays were used to examine TF responses. In an effort to reduce the negative effects of inflammatory cytokines on TFs, adipose-derived mesenchymal stromal cells (ASCs) were incorporated into the model and their ability to modulate inflammation was investigated.

          Results

          The inflammatory cytokine interleukin 1 beta (IL-1β) and macrophages of varying phenotypes induced up-regulation of pro-inflammatory factors and matrix degradation factors and down-regulation of factors related to extracellular matrix formation by TFs in culture. ASCs did not suppress these presumably negative effects induced by IL-1β. However, ASC co-culture with M1 (pro-inflammatory) macrophages successfully suppressed the effects of M1 macrophages on TFs by inducing a phenotypic switch from a pro-inflammatory macrophage phenotype to an anti-inflammatory macrophage phenotype, thus resulting in exposure of TFs to lower levels of pro-inflammatory cytokines (e.g., IL-1β, tumor necrosis factor alpha (TNFα)).

          Conclusions

          These findings suggest that IL-1β and M1 macrophages are detrimental to tendon healing and that ASC-mediated modulation of the post-operative inflammatory response may be beneficial for tendon healing.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s13287-015-0059-4) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          The outcome and repair integrity of completely arthroscopically repaired large and massive rotator cuff tears.

          The impact of a recurrent defect on the outcome after rotator cuff repair has been controversial. The purpose of this study was to evaluate the functional and anatomic results after arthroscopic repair of large and massive rotator cuff tears with use of ultrasound as an imaging modality to determine the postoperative integrity of the repair. Eighteen patients who had complete arthroscopic repair of a tear measuring >2 cm in the transverse dimension were evaluated at a minimum of twelve months after surgery and again at two years after surgery. The evaluation consisted of a standardized history and physical examination as well as calculation of the preoperative and postoperative shoulder scores according to the system of the American Shoulder and Elbow Surgeons. The strength of both shoulders was quantitated postoperatively with use of a portable dynamometer. Ultrasound studies were performed with use of an established and validated protocol at a minimum of twelve months after surgery. Recurrent tears were seen in seventeen of the eighteen patients. Despite the absence of healing at twelve months after surgery, thirteen patients had an American Shoulder and Elbow Surgeons score of >/=90 points. Sixteen patients had an improvement in the functional outcome score, which increased from an average of 48.3 to 84.6 points. Sixteen patients had a decrease in pain, and twelve had no pain. Although eight patients had preoperative forward elevation to /=90 points, and six patients had a score of /=80.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation.

            Marrow stromal cells (MSC) can differentiate into multiple mesenchymal tissues. To assess the feasibility of human MSC transplantation, we evaluated the in vitro immunogenicity of MSC and their ability to function as alloantigen presenting cells (APC). Human MSC were derived and used in mixed cell cultures with allogeneic peripheral blood mononuclear cells (PBMC). Expression of immunoregulatory molecules on MSC was analyzed by flow cytometry. An MSC-associated suppressive activity was analyzed using cell-proliferation assays and enzyme-linked immunoassays. MSC failed to elicit a proliferative response when cocultured with allogeneic PBMC, despite provision of a costimulatory signal delivered by an anti-CD28 antibody and pretreatment of MSC with gamma-interferon. MSC express major histocompatibility complex (MHC) class I and lymphocyte function-associated antigen (LFA)-3 antigens constitutively and MHC class II and intercellular adhesion molecule (ICAM)-1 antigens upon gamma-interferon treatment but do not express CD80, CD86, or CD40 costimulatory molecules. MSC actively suppressed proliferation of responder PBMC stimulated by third-party allogeneic PBMC as well as T cells stimulated by anti-CD3 and anti-CD28 antibodies. Separation of MSC and PBMC by a semipermeable membrane did not abrogate the suppression. The suppressive activity could not be accounted for by MSC production of interleukin-10, transforming growth factor-beta1, or prostaglandin E2, nor by tryptophan depletion of the culture medium. Human MSC fail to stimulate allogeneic PBMC or T-cell proliferation in mixed cell cultures. Unlike other nonprofessional APC, this failure of function is not reversed by provision of CD28-mediated costimulation nor gamma-interferon pretreatment. Rather, MSC actively inhibit T-cell proliferation, suggesting that allogeneic MSC transplantation might be accomplished without the need for significant host immunosuppression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo.

              Mesenchymal stem cells (MSCs), multipotential cells that reside within the bone marrow, can be induced to differentiate into various components of the marrow microenvironment, such as bone, adipose, and stromal tissues. The bone marrow microenvironment is vital to the development, differentiation, and regulation of the lymphohematopoietic system. We hypothesized that the activities of MSCs in the bone marrow microenvironment might also include immunomodulatory effects on lymphocytes. Baboon MSCs were tested in vitro for their ability to elicit a proliferative response from allogeneic lymphocytes, to inhibit an ongoing allogeneic response, and to inhibit a proliferative response to potent T-cell mitogens. In vivo effects were tested by intravenous administration of donor MSCs to MHC-mismatched recipient baboons prior to placement of autologous, donor, and third-party skin grafts. MSCs failed to elicit a proliferative response from allogeneic lymphocytes. MSCs added into a mixed lymphocyte reaction, either on day 0 or on day 3, or to mitogen-stimulated lymphocytes, led to a greater than 50% reduction in proliferative activity. This effect could be maximized by escalating the dose of MSCs and could be reduced with the addition of exogenous IL-2. In vivo administration of MSCs led to prolonged skin graft survival when compared to control animals: 11.3 +/- 0.3 vs 7 +/- 0. Baboon MSCs have been observed to alter lymphocyte reactivity to allogeneic target cells and tissues. These immunoregulatory features may prove useful in future applications of tissue regeneration and stem cell engineering.
                Bookmark

                Author and article information

                Contributors
                cionnemanning@gmail.com
                catmartel@gmail.com
                sakiyama@wustl.edu
                silvam@wudosis.wustl.edu
                shivshah03@gmail.com
                gelberman@wudosis.wustl.edu
                ThomopoulosS@wudosis.wustl.edu
                Journal
                Stem Cell Res Ther
                Stem Cell Res Ther
                Stem Cell Research & Therapy
                BioMed Central (London )
                1757-6512
                16 April 2015
                16 April 2015
                2015
                : 6
                : 1
                : 74
                Affiliations
                [ ]Department of Orthopedic Surgery, Washington University, 425 S Euclid, Box 8233, St Louis, MO 63110 USA
                [ ]Department of Pathology and Immunology, Washington University, 425 S Euclid, Box 8233, St Louis, MO 63110 USA
                [ ]Current address: Montreal Heart Institute, Université de Montréal, Montréal, Quebec Canada
                [ ]Department of Biomedical Engineering, Washington University, One Brookings Drive, Campus Box 1097, St Louis, MO USA
                Article
                59
                10.1186/s13287-015-0059-4
                4416344
                25889287
                20c31163-39d3-4e77-9f42-60e68b584f40
                © Manning et al.; licensee BioMed Central. 2015

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 25 September 2014
                : 25 September 2014
                : 20 March 2015
                Categories
                Research
                Custom metadata
                © The Author(s) 2015

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article