1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Novel mutations in response to vitamin B6 in primary hyperoxaluria type 1 after only kidney transplantation: a case report

      case-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recently, the mainstream curative treatment for primary hyperoxaluria type 1 (PH1) is combined liver and kidney transplantation, and only kidney transplantation is considered ineffective for most PH1 patients. Furthermore, vitamin B6 (B6) is the only permitted drug available for treatment. However, except for specific mutations such as G170R and F152I in gene AGXT, data of B6 effect on other mutations are lacking. Insufficient research has evaluated the efficacy of the combination of kidney transplantation and B6 treatment in the therapeutic strategy in PH1 patients. Here, we report a case of a 52-year-old male with frequent stone events and end-stage renal diseases (ESRD), and subsequently undergone kidney transplantation. Sudden rising of serum creatinine within two months after the transplantation. After gene sequencing, the mutations of A186V, R197Q, and I340M were presented in gene AGXT. Therefore, the patient was diagnosed with PH1. B6 administration was attempted during the period of waiting for liver transplantation. Four-week oral B6 therapy (50 mg tid) reduced the serum creatinine of the patient from 194 to 145 µmol/L, which revealed that the patient probably responded to B6 treatment. At the almost three-year follow-up, the patient’s serum creatinine remained reduced (130 µmol/L), without urinary oxalate excretion. In this case, we established a positive effect, even a beneficial result, of the use of B6 as a retrospective therapeutic choice in PH1 treatment after kidney transplantation.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: not found
          • Article: not found

          Primary hyperoxaluria.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An update on primary hyperoxaluria.

            The autosomal recessive inherited primary hyperoxalurias types I, II and III are caused by defects in glyoxylate metabolism that lead to the endogenous overproduction of oxalate. Type III primary hyperoxaluria was first described in 2010 and further types are likely to exist. In all forms, urinary excretion of oxalate is strongly elevated (>1 mmol/1.73 m(2) body surface area per day; normal 30% of patients with primary hyperoxaluria type I. The fact that such a large proportion of patients have such poor outcomes is particularly unfortunate as ESRD can be delayed or even prevented by early intervention. Treatment options for primary hyperoxaluria include alkaline citrate, orthophosphate, or magnesium. In addition, pyridoxine treatment can be used to normalize or reduce oxalate excretion in about 30% of patients with primary hyperoxaluria type I. Time on dialysis should be short to avoid overt systemic oxalosis. Transplantation methods depend on the type of primary hyperoxaluria and on the particular patient, but combined liver and kidney transplantation is the method of choice in patients with primary hyperoxaluria type I and isolated kidney transplantation is the preferred method in those with primary hyperoxaluria type II. To the best of our knowledge, progression to ESRD has not yet been reported in any patient with primary hyperoxaluria type III.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An Investigational RNAi Therapeutic Targeting Glycolate Oxidase Reduces Oxalate Production in Models of Primary Hyperoxaluria.

              Primary hyperoxaluria type 1 (PH1), an inherited rare disease of glyoxylate metabolism, arises from mutations in the enzyme alanine-glyoxylate aminotransferase. The resulting deficiency in this enzyme leads to abnormally high oxalate production resulting in calcium oxalate crystal formation and deposition in the kidney and many other tissues, with systemic oxalosis and ESRD being a common outcome. Although a small subset of patients manages the disease with vitamin B6 treatments, the only effective treatment for most is a combined liver-kidney transplant, which requires life-long immune suppression and carries significant mortality risk. In this report, we discuss the development of ALN-GO1, an investigational RNA interference (RNAi) therapeutic targeting glycolate oxidase, to deplete the substrate for oxalate synthesis. Subcutaneous administration of ALN-GO1 resulted in potent, dose-dependent, and durable silencing of the mRNA encoding glycolate oxidase and increased serum glycolate concentrations in wild-type mice, rats, and nonhuman primates. ALN-GO1 also increased urinary glycolate concentrations in normal nonhuman primates and in a genetic mouse model of PH1. Notably, ALN-GO1 reduced urinary oxalate concentration up to 50% after a single dose in the genetic mouse model of PH1, and up to 98% after multiple doses in a rat model of hyperoxaluria. These data demonstrate the ability of ALN-GO1 to reduce oxalate production in preclinical models of PH1 across multiple species and provide a clear rationale for clinical trials with this compound.
                Bookmark

                Author and article information

                Journal
                Transl Androl Urol
                Transl Androl Urol
                TAU
                Translational Andrology and Urology
                AME Publishing Company
                2223-4683
                2223-4691
                December 2020
                December 2020
                : 9
                : 6
                : 2848-2854
                Affiliations
                [1 ]Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China;
                [2 ]Key Laboratory of Organ Transplantation, Ministry of Education , Wuhan, China;
                [3 ]NHC Key Laboratory of Organ Transplantation , Wuhan, China;
                [4 ]Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences , Wuhan, China
                Author notes
                [#]

                These authors contributed equally to this work.

                Correspondence to: Dunfeng Du, MD, PhD. Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China. Email: dudunfeng@ 123456163.com ; dfdu@ 123456tjh.tjmu.edu.cn .
                Article
                tau-09-06-2848
                10.21037/tau-20-979
                7807321
                33457257
                20cb7865-fa2d-4878-aa41-cd0d10a3bc44
                2020 Translational Andrology and Urology. All rights reserved.

                Open Access Statement: This is an Open Access article distributed in accordance with the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0), which permits the non-commercial replication and distribution of the article with the strict proviso that no changes or edits are made and the original work is properly cited (including links to both the formal publication through the relevant DOI and the license). See: https://creativecommons.org/licenses/by-nc-nd/4.0.

                History
                : 08 June 2020
                : 06 October 2020
                Categories
                Case Report

                primary hyperoxaluria type 1 (ph1),vitamin b6 (b6),kidney transplantation,graft function,case report

                Comments

                Comment on this article