38
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An Outer Arm Dynein Conformational Switch Is Required for Metachronal Synchrony of Motile Cilia in Planaria

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Here we use the motile ventral cilia of the planarian S. mediterranea to examine the role of outer arm dynein in the generation and maintenance of metachronal synchrony. We demonstrate that a single dynein light chain plays a mechanosensory role necessary to entrain and maintain the metachronal synchrony of motile cilia.

          Abstract

          Motile cilia mediate the flow of mucus and other fluids across the surface of specialized epithelia in metazoans. Efficient clearance of peri-ciliary fluids depends on the precise coordination of ciliary beating to produce metachronal waves. The role of individual dynein motors and the mechanical feedback mechanisms required for this process are not well understood. Here we used the ciliated epithelium of the planarian Schmidtea mediterranea to dissect the role of outer arm dynein motors in the metachronal synchrony of motile cilia. We demonstrate that animals that completely lack outer dynein arms display a significant decline in beat frequency and an inability of cilia to coordinate their oscillations and form metachronal waves. Furthermore, lack of a key mechanosensitive regulatory component (LC1) yields a similar phenotype even though outer arms still assemble in the axoneme. The lack of metachrony was not due simply to a decrease in ciliary beat frequency, as reducing this parameter by altering medium viscosity did not affect ciliary coordination. In addition, we did not observe a significant temporal variability in the beat cycle of impaired cilia. We propose that this conformational switch provides a mechanical feedback system within outer arm dynein that is necessary to entrain metachronal synchrony.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: not found
          • Article: not found

          Specific interference by ingested dsRNA.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans.

            Genetic interference mediated by double-stranded RNA (RNAi) has been a valuable tool in the analysis of gene function in Caenorhabditis elegans. Here we report an efficient induction of RNAi using bacteria to deliver double-stranded RNA. This method makes use of bacteria that are deficient in RNaseIII, an enzyme that normally degrades a majority of dsRNAs in the bacterial cell. Bacteria deficient for RNaseIII were engineered to produce high quantities of specific dsRNA segments. When fed to C. elegans, such engineered bacteria were found to produce populations of RNAi-affected animals with phenotypes that were comparable in expressivity to the corresponding loss-of-function mutants. We found the method to be most effective in inducing RNAi for non-neuronal tissue of late larval and adult hermaphrodites, with decreased effectiveness in the nervous system, in early larval stages, and in males. Bacteria-induced RNAi phenotypes could be maintained over the course of several generations with continuous feeding, allowing for convenient assessments of the biological consequences of specific genetic interference and of continuous exposure to dsRNAs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Motile cilia of human airway epithelia are chemosensory.

              Cilia are microscopic projections that extend from eukaryotic cells. There are two general types of cilia; primary cilia serve as sensory organelles, whereas motile cilia exert mechanical force. The motile cilia emerging from human airway epithelial cells propel harmful inhaled material out of the lung. We found that these cells express sensory bitter taste receptors, which localized on motile cilia. Bitter compounds increased the intracellular calcium ion concentration and stimulated ciliary beat frequency. Thus, airway epithelia contain a cell-autonomous system in which motile cilia both sense noxious substances entering airways and initiate a defensive mechanical mechanism to eliminate the offending compound. Hence, like primary cilia, classical motile cilia also contain sensors to detect the external environment.
                Bookmark

                Author and article information

                Contributors
                Role: Monitoring Editor
                Journal
                Mol Biol Cell
                mbc
                mbc
                Mol. Bio. Cell
                Molecular Biology of the Cell
                The American Society for Cell Biology
                1059-1524
                1939-4586
                1 November 2010
                : 21
                : 21
                : 3669-3679
                Affiliations
                [1]Department of Molecular, Microbial, and Structural Biology, University of Connecticut Health Center, Farmington, CT 06030-3305
                Author notes
                Address correspondence to: Stephen King ( king@ 123456neuron.uchc.edu ).
                Article
                3642091
                10.1091/mbc.E10-04-0373
                2965684
                20844081
                20d94906-12c8-4a54-ad00-c2e5b78ad78a
                © 2010 by The American Society for Cell Biology

                This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License ( http://creativecommons.org/licenses/by-nc-sa/3.0).

                History
                : 28 April 2010
                : 21 July 2010
                : 7 September 2010
                Categories
                Articles
                Cell Motility

                Molecular biology
                Molecular biology

                Comments

                Comment on this article