24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Field detection devices for screening the quality of medicines: a systematic review

      systematic-review

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Poor quality medicines have devastating consequences. A plethora of innovative portable devices to screen for poor quality medicines has become available, leading to hope that they could empower medicine inspectors and enhance surveillance. However, information comparing these new technologies is woefully scarce.

          Methods

          We undertook a systematic review of Embase, PubMed, Web of Science and SciFinder databases up to 30 April 2018. Scientific studies evaluating the performances/abilities of portable devices to assess any aspect of the quality of pharmaceutical products were included.

          Results

          Forty-one devices, from small benchtop spectrometers to ‘lab-on-a-chip’ single-use devices, with prices ranging from <US$10 to >US$20 000, were included. Only six devices had been field-tested (GPHF-Minilab, CD3/CD3+, TruScan RM, lateral flow dipstick immunoassay, CBEx and Speedy Breedy). The median (range) number of active pharmaceutical ingredients (APIs) assessed per device was only 2 (1–20). The majority of devices showed promise to distinguish genuine from falsified medicines. Devices with the potential to assay API (semi)-quantitatively required consumables and were destructive (GPHF-Minilab, PharmaChk, aPADs, lateral flow immunoassay dipsticks, paper-based microfluidic strip and capillary electrophoresis), except for spectroscopic devices. However, the 10 spectroscopic devices tested for their abilities to quantitate APIs required processing complex API-specific calibration models. Scientific evidence of the ability of the devices to accurately test liquid, capsule or topical formulations, or to distinguish between chiral molecules, was limited. There was no comment on cost-effectiveness and little information on where in the pharmaceutical supply chain these devices could be best deployed.

          Conclusion

          Although a diverse range of portable field detection devices for medicines quality screening is available, there is a vitally important lack of independent evaluation of the majority of devices, particularly in field settings. Intensive research is needed in order to inform national medicines regulatory authorities of the optimal choice of device(s) to combat poor quality medicines.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          Counterfeit anti-infective drugs.

          The production of counterfeit or substandard anti-infective drugs is a widespread and under-recognised problem that contributes to morbidity, mortality, and drug resistance, and leads to spurious reporting of resistance and toxicity and loss of confidence in health-care systems. Counterfeit drugs particularly affect the most disadvantaged people in poor countries. Although advances in forensic chemical analysis and simple field tests will enhance drug quality monitoring, improved access to inexpensive genuine medicines, support of drug regulatory authorities, more open reporting, vigorous law enforcement, and more international cooperation with determined political leadership will be essential to counter this threat.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Technologies for Detecting Falsified and Substandard Drugs in Low and Middle-Income Countries

            Falsified and substandard drugs are a global health problem, particularly in low- and middle-income countries (LMIC) that have weak pharmacovigilance and drug regulatory systems. Poor quality medicines have important health consequences, including the potential for treatment failure, development of antimicrobial resistance, and serious adverse drug reactions, increasing healthcare costs and undermining the public's confidence in healthcare systems. This article presents a review of the methods employed for the analysis of pharmaceutical formulations. Technologies for detecting substandard and falsified drugs were identified primarily through literature reviews. Key-informant interviews with experts augmented our methods when warranted. In order to aid comparisons, technologies were assigned a suitability score for use in LMIC ranging from 0–8. Scores measured the need for electricity, need for sample preparation, need for reagents, portability, level of training required, and speed of analysis. Technologies with higher scores were deemed the most feasible in LMICs. We categorized technologies that cost $10,000 USD or less as low cost, $10,000–100,000 USD as medium cost and those greater than $100,000 USD as high cost technologies (all prices are 2013 USD). This search strategy yielded information on 42 unique technologies. Five technologies were deemed both low cost and had feasibility scores between 6–8, and an additional four technologies had medium cost and high feasibility. Twelve technologies were deemed portable and therefore could be used in the field. Many technologies can aid in the detection of substandard and falsified drugs that vary from the simplest of checklists for packaging to the most complex mass spectrometry analyses. Although there is no single technology that can serve all the requirements of detecting falsified and substandard drugs, there is an opportunity to bifurcate the technologies into specific niches to address specific sections within the workflow process of detecting products.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              A link between poor quality antimalarials and malaria drug resistance?

                Bookmark

                Author and article information

                Journal
                BMJ Glob Health
                BMJ Glob Health
                bmjgh
                bmjgh
                BMJ Global Health
                BMJ Publishing Group (BMA House, Tavistock Square, London, WC1H 9JR )
                2059-7908
                2018
                29 August 2018
                : 3
                : 4
                : e000725
                Affiliations
                [1 ] departmentLao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory , Mahosot Hospital , Vientiane, Laos
                [2 ] departmentCentre for Tropical Medicine and Global Health , University of Oxford , Oxford, UK
                [3 ] departmentInfectious Diseases Data Observatory (IDDO)/Worldwide Antimalarial Resistance Network (WWARN) , University of Oxford , Oxford, UK
                [4 ] departmentSchool of Chemistry and Biochemistry , Georgia Institute of Technology , Atlanta, Georgia, USA
                [5 ] departmentCampus Chemical Instrument Center Mass Spectrometry and Proteomics Facility , The Ohio State University , Columbus, Ohio, USA
                Author notes
                [Correspondence to ] Dr Céline Caillet; celine.caillet@ 123456iddo.org
                Author information
                http://orcid.org/0000-0002-5554-2603
                Article
                bmjgh-2018-000725
                10.1136/bmjgh-2018-000725
                6135480
                30233826
                2103d536-fa9f-40ac-8281-697400fe0a93
                © Author(s) (or their employer(s)) 2018. Re-use permitted under CC BY. Published by BMJ.

                This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: https://creativecommons.org/licenses/by/4.0/.

                History
                : 17 January 2018
                : 20 June 2018
                : 24 June 2018
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100004440, Wellcome Trust;
                Funded by: FundRef http://dx.doi.org/10.13039/100004425, Asian Development Bank;
                Categories
                Research
                1506
                Custom metadata
                unlocked

                other diagnostic or tool,control strategies,public health,screening,systematic review

                Comments

                Comment on this article