35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Environmental Impact on Vascular Development Predicted by High-Throughput Screening

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Understanding health risks to embryonic development from exposure to environmental chemicals is a significant challenge given the diverse chemical landscape and paucity of data for most of these compounds. High-throughput screening (HTS) in the U.S. Environmental Protection Agency (EPA) ToxCast™ project provides vast data on an expanding chemical library currently consisting of > 1,000 unique compounds across > 500 in vitro assays in phase I (complete) and Phase II (under way). This public data set can be used to evaluate concentration-dependent effects on many diverse biological targets and build predictive models of prototypical toxicity pathways that can aid decision making for assessments of human developmental health and disease.

          Objective: We mined the ToxCast phase I data set to identify signatures for potential chemical disruption of blood vessel formation and remodeling.

          Methods: ToxCast phase I screened 309 chemicals using 467 HTS assays across nine assay technology platforms. The assays measured direct interactions between chemicals and molecular targets (receptors, enzymes), as well as downstream effects on reporter gene activity or cellular consequences. We ranked the chemicals according to individual vascular bioactivity score and visualized the ranking using ToxPi (Toxicological Priority Index) profiles.

          Results: Targets in inflammatory chemokine signaling, the vascular endothelial growth factor pathway, and the plasminogen-activating system were strongly perturbed by some chemicals, and we found positive correlations with developmental effects from the U.S. EPA ToxRefDB (Toxicological Reference Database) in vivo database containing prenatal rat and rabbit guideline studies. We observed distinctly different correlative patterns for chemicals with effects in rabbits versus rats, despite derivation of in vitro signatures based on human cells and cell-free biochemical targets, implying conservation but potentially differential contributions of developmental pathways among species. Follow-up analysis with antiangiogenic thalidomide analogs and additional in vitro vascular targets showed in vitro activity consistent with the most active environmental chemicals tested here.

          Conclusions: We predicted that blood vessel development is a target for environmental chemicals acting as putative vascular disruptor compounds (pVDCs) and identified potential species differences in sensitive vascular developmental pathways.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          In Vitro Screening of Environmental Chemicals for Targeted Testing Prioritization: The ToxCast Project

          Background Chemical toxicity testing is being transformed by advances in biology and computer modeling, concerns over animal use, and the thousands of environmental chemicals lacking toxicity data. The U.S. Environmental Protection Agency’s ToxCast program aims to address these concerns by screening and prioritizing chemicals for potential human toxicity using in vitro assays and in silico approaches. Objectives This project aims to evaluate the use of in vitro assays for understanding the types of molecular and pathway perturbations caused by environmental chemicals and to build initial prioritization models of in vivo toxicity. Methods We tested 309 mostly pesticide active chemicals in 467 assays across nine technologies, including high-throughput cell-free assays and cell-based assays, in multiple human primary cells and cell lines plus rat primary hepatocytes. Both individual and composite scores for effects on genes and pathways were analyzed. Results Chemicals displayed a broad spectrum of activity at the molecular and pathway levels. We saw many expected interactions, including endocrine and xenobiotic metabolism enzyme activity. Chemicals ranged in promiscuity across pathways, from no activity to affecting dozens of pathways. We found a statistically significant inverse association between the number of pathways perturbed by a chemical at low in vitro concentrations and the lowest in vivo dose at which a chemical causes toxicity. We also found associations between a small set of in vitro assays and rodent liver lesion formation. Conclusions This approach promises to provide meaningful data on the thousands of untested environmental chemicals and to guide targeted testing of environmental contaminants.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The developmental toxicity of perfluoroalkyl acids and their derivatives.

            Perfluoroalkyl acids such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) have applications in numerous industrial and consumer products. Although the toxicology of some of these compounds has been investigated in the past, the widespread prevalence of PFOS and PFOA in humans, as demonstrated in recent bio-monitoring studies, has drawn considerable interest from the public and regulatory agencies as well as renewed efforts to better understand the hazards that may be inherent in these compounds. This review provides a brief overview of the perfluoroalkyl chemicals and a summary of the available information on the developmental toxicity of the eight-carbon compounds, PFOS and PFOA. Although the teratological potentials of some of these chemicals had been studied in the past and the findings were generally unremarkable, results from recent postnatal studies on developmental and reproductive indices have prompted consideration of their relevance to human health risk. Based on current understanding of the developmental effects of PFOS and PFOA in rodents, several avenues of research are suggested that would further support the risk assessment of these perfluorinated organic chemicals.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Toxicity testing in the 21st century: a vision and a strategy.

              S. J. Gibb (2007)
              Advances in molecular biology, biotechnology, and other fields are paving the way for major improvements in how scientists evaluate the health risks posed by potentially toxic chemicals found at low levels in the environment. These advances would make toxicity testing quicker, less expensive, and more directly relevant to human exposures. This National Research Council report creates a far-reaching vision for the future of toxicity testing.
                Bookmark

                Author and article information

                Journal
                Environ Health Perspect
                EHP
                Environmental Health Perspectives
                National Institute of Environmental Health Sciences
                0091-6765
                1552-9924
                25 July 2011
                November 2011
                : 119
                : 11
                : 1596-1603
                Affiliations
                [1 ]National Center for Computational Toxiciology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
                [2 ]Lockheed Martin, Research Triangle Park, North Carolina, USA
                [3 ]National Health and Environmental Effects Research Laboratory, and
                [4 ]National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
                Author notes
                Address correspondence to N.C. Kleinstreuer, National Center for Computational Toxicology (B205-01), Office of Research & Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 USA. Telephone: (919) 541-5776. Fax: (919) 541-1194. E-mail: kleinstreuer.nicole@ 123456epa.gov
                Article
                ehp.1103412
                10.1289/ehp.1103412
                3226499
                21788198
                2117f7b5-7813-40fa-8786-709907c5dc24
                Copyright @ 2011

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 06 January 2011
                : 25 July 2011
                Categories
                Research

                Public health
                vascular development,developmental toxicity,thalidomide,angiogenesis,high-throughput screening (hts)

                Comments

                Comment on this article