15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ouabain protects against adverse developmental programming of the kidney

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The kidney is extraordinarily sensitive to adverse fetal programming. Malnutrition, the most common form of developmental challenge, retards the formation of functional units, the nephrons. The resulting low nephron endowment increases susceptibility to renal injury and disease. Using explanted rat embryonic kidneys, we found that ouabain, the Na,K-ATPase ligand, triggers a calcium–nuclear factor-κB signal, which protects kidney development from adverse effects of malnutrition. To mimic malnutrition, kidneys were serum deprived for 24 h. This resulted in severe retardation of nephron formation and a robust increase in apoptosis. In ouabain-exposed kidneys, no adverse effects of serum deprivation were observed. Proof of principle that ouabain rescues development of embryonic kidneys exposed to malnutrition was obtained from studies on pregnant rats given a low-protein diet and treated with ouabain or vehicle throughout pregnancy. Thus, we have identified a survival signal and a feasible therapeutic tool to prevent adverse programming of kidney development.

          Abstract

          Poor maternal nutrition is known to affect fetal kidney development. This study shows that the sodium potassium ATPase ligand, ouabain, protects kidneys from cell death induced by serum starvation in vitro and from abnormal kidney development due to a low-protein diet in vivo.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Calcium oscillations increase the efficiency and specificity of gene expression.

          Cytosolic calcium ([Ca2+]i) oscillations are a nearly universal mode of signalling in excitable and non-excitable cells. Although Ca2+ is known to mediate a diverse array of cell functions, it is not known whether oscillations contribute to the efficiency or specificity of signalling or are merely an inevitable consequence of the feedback control of [Ca2+]i. We have developed a Ca2+ clamp technique to investigate the roles of oscillation amplitude and frequency in regulating gene expression driven by the proinflammatory transcription factors NF-AT, Oct/OAP and NF-kappaB. Here we report that oscillations reduce the effective Ca2+ threshold for activating transcription factors, thereby increasing signal detection at low levels of stimulation. In addition, specificity is encoded by the oscillation frequency: rapid oscillations stimulate all three transcription factors, whereas infrequent oscillations activate only NF-kappaB. The genes encoding the cytokines interleukin (IL)-2 and IL-8 are also frequency-sensitive in a way that reflects their degree of dependence on NF-AT versus NF-kappaB. Our results provide direct evidence that [Ca2+]i oscillations increase both the efficacy and the information content of Ca2+ signals that lead to gene expression and cell differentiation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Glomerular number and size in autopsy kidneys: the relationship to birth weight.

            In the Southeast United States, African Americans have an estimated incidence of hypertension and end-stage renal disease (ESRD) that is five times greater than Caucasians. Higher rates of low birth weight (LBW) among African Americans is suggested to predispose African Americans to the higher risk, possibly by reducing the number of glomeruli that develop in the kidney. This study investigates the relationships between age, race, gender, total glomerular number (Nglom), mean glomerular volume (Vglom), body surface area (BSA), and birth weight. Stereologic estimates of Nglom and Vglom were obtained using the physical disector/fractionator combination for autopsy kidneys from 37 African Americans and 19 Caucasians. Nglom was normally distributed and ranged from 227,327 to 1,825,380, an 8.0-fold difference. A direct linear relationship was observed between Nglom and birth weight (r = 0.423, P = 0.0012) with a regression coefficient that predicted an increase of 257,426 glomeruli per kilogram increase in birth weight (alpha = 0.050:0.908). Among adults there was a 4.9-fold range in Vglom, and in adults, Vglom was strongly and inversely correlated with Nglom (r =-0.640, P = 0.000002). Adult Vglom showed no significant correlation with BSA for males (r = -0.0150, P = 0.936), although it did for females (r = 0.606, P = 0.022). No racial differences in average Nglom or Vglom were observed. Birth weight is a strong determinant of Nglom and thereby of glomerular size in the postnatal kidney. The findings support the hypothesis that LBW by impairing nephron development is a risk factor for hypertension and ESRD in adulthood.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nuclear factor-kappaB inhibitors as sensitizers to anticancer drugs.

              The cytotoxicity of chemotherapeutic agents is attributed to apoptosis. Acquired resistance to the effects of chemotherapy has emerged as a significant impediment to effective cancer therapy. One feature that cytotoxic treatments of cancer have in common is their activation of the transcription factor nuclear factor-kappaB (NF-kappaB), which regulates cell survival. NF-kappaB activation suppresses the apoptotic potential of chemotherapeutic agents and contributes to resistance. What evidence is there that inhibitors of NF-kappaB might promote apoptosis in cancer cells and can NF-kappaB inhibitors be used to overcome resistance to chemotherapeutic agents?
                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nature Communications
                Nature Publishing Group
                2041-1723
                27 July 2010
                : 1
                : 4
                : 1-7
                Affiliations
                [1 ]Department of Women's and Children's Health, Karolinska Institutet , Stockholm 17176, Sweden.
                [2 ]Division of Cell Physics, Department of Applied Physics, Royal Institute of Technology , Stockholm 10044, Sweden.
                Author notes
                [*]

                These authors contributed equally to this work.

                Article
                ncomms1043
                10.1038/ncomms1043
                2963829
                20975704
                2129fa48-da85-4056-80b5-978bfdf75e67
                Copyright © 2010, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.

                This work is licensed under a Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

                History
                : 13 May 2010
                : 29 June 2010
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article