18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Ribosomal DNA in plant hybrids: Inheritance, rearrangement, expression

      , ,

      Systematics and Biodiversity

      Cambridge University Press (CUP)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 131

          • Record: found
          • Abstract: found
          • Article: not found

          Understanding mechanisms of novel gene expression in polyploids.

          Polyploidy has long been recognized as a prominent force shaping the evolution of eukaryotes, especially flowering plants. New phenotypes often arise with polyploid formation and can contribute to the success of polyploids in nature or their selection for use in agriculture. Although the causes of novel variation in polyploids are not well understood, they could involve changes in gene expression through increased variation in dosage-regulated gene expression, altered regulatory interactions, and rapid genetic and epigenetic changes. New research approaches are being used to study these mechanisms and the results should provide a more complete understanding of polyploidy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium).

            Polyploidy is a prominent process in plant evolution; yet few data address the question of whether homeologous sequences evolve independently subsequent to polyploidization. We report on ribosomal DNA (rDNA) evolution in five allopolyploid (AD genome) species of cotton (Gossypium) and species representing their diploid progenitors (A genome, D genome). Sequence data from the internal transcribed spacer regions (ITS1 and ITS2) and the 5.8S gene indicate that rDNA arrays are homogeneous, or nearly so, in all diploids and allopolyploids examined. Because these arrays occur at four chromosomal loci in allopolyploid cotton, two in each subgenome, repeats from different arrays must have become homogenized by interlocus concerted evolution. Southern hybridization analysis combined with copy-number estimation demonstrate that this process has gone to completion in the diploids and to completion or near-completion in all allopolyploid species and that it most likely involves the entire rDNA repeat. Phylogenetic analysis demonstrates that interlocus concerted evolution has been bidirectional in allopolyploid species--i.e., rDNA from four polyploid lineages has been homogenized to a D genome repeat type, whereas sequences from Gossypium mustelinum have concerted to an A genome repeat type. Although little is known regarding the functional significance of interlocus concerted evolution of homeologous sequences, this study demonstrates that the process occurs for tandemly repeated sequences in diploid and polyploid plants. That interlocus concerted evolution can occur bidirectionally subsequent to hybidization and polyploidization has significant implications for phylogeny reconstruction, especially when based on rDNA sequences.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The nucleolar remodeling complex NoRC mediates heterochromatin formation and silencing of ribosomal gene transcription.

              Epigenetic control mechanisms silence about half of the ribosomal RNA (rRNA) genes in metabolically active cells. In exploring the mechanism by which the active or silent state of rRNA genes is inherited, we found that NoRC, a nucleolar remodeling complex containing Snf2h (also called Smarca5, SWI/SNF-related matrix-associated actin-dependent regulator of chromatin, subfamily a, member 5), represses rDNA transcription. NoRC mediates rDNA silencing by recruiting DNA methyltransferase and histone deacetylase activity to the rDNA promoter, thus establishing structural characteristics of heterochromatin such as DNA methylation, histone hypoacetylation and methylation of the Lys9 residue of histone H3. These results indicate that active and inactive rRNA genes can be demarcated by their associated proteins, and link chromatin remodeling to DNA methylation and specific histone modifications.
                Bookmark

                Author and article information

                Journal
                Systematics and Biodiversity
                Systematics and Biodiversity
                Cambridge University Press (CUP)
                1477-2000
                1478-0933
                August 2007
                August 2007
                : 5
                : 3
                : 261-276
                Article
                10.1017/S1477200007002447
                © 2007

                Comments

                Comment on this article