53
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Stress and hormones

      , 1

      Indian Journal of Endocrinology and Metabolism

      Medknow Publications

      Graves’ disease, hormones, stress

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the modern environment one is exposed to various stressful conditions. Stress can lead to changes in the serum level of many hormones including glucocorticoids, catecholamines, growth hormone and prolactin. Some of these changes are necessary for the fight or flight response to protect oneself. Some of these stressful responses can lead to endocrine disorders like Graves’ disease, gonadal dysfunction, psychosexual dwarfism and obesity. Stress can also alter the clinical status of many preexisting endocrine disorders such as precipitation of adrenal crisis and thyroid storm.

          Related collections

          Most cited references 46

          • Record: found
          • Abstract: found
          • Article: not found

          Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo–pituitary–adrenocortical responsiveness

          Appropriate regulatory control of the hypothalamo-pituitary-adrenocortical stress axis is essential to health and survival. The following review documents the principle extrinsic and intrinsic mechanisms responsible for regulating stress-responsive CRH neurons of the hypothalamic paraventricular nucleus, which summate excitatory and inhibitory inputs into a net secretory signal at the pituitary gland. Regions that directly innervate these neurons are primed to relay sensory information, including visceral afferents, nociceptors and circumventricular organs, thereby promoting 'reactive' corticosteroid responses to emergent homeostatic challenges. Indirect inputs from the limbic-associated structures are capable of activating these same cells in the absence of frank physiological challenges; such 'anticipatory' signals regulate glucocorticoid release under conditions in which physical challenges may be predicted, either by innate programs or conditioned stimuli. Importantly, 'anticipatory' circuits are integrated with neural pathways subserving 'reactive' responses at multiple levels. The resultant hierarchical organization of stress-responsive neurocircuitries is capable of comparing information from multiple limbic sources with internally generated and peripherally sensed information, thereby tuning the relative activity of the adrenal cortex. Imbalances among these limbic pathways and homeostatic sensors are likely to underlie hypothalamo-pituitary-adrenocortical dysfunction associated with numerous disease processes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Relation between the Hypothalamic-Pituitary-Thyroid (HPT) Axis and the Hypothalamic-Pituitary-Adrenal (HPA) Axis during Repeated Stress

            Previous work has indicated that acute and repeated stress can alter thyroid hormone secretion. Corticosterone, the end product of hypothalamic-pituitary-adrenal (HPA) axis activation and strongly regulated by stress, has been suggested to play a role in hypothalamic-pituitary-thyroid (HPT) axis regulation. In the current study, we sought to further characterize HPT axis activity after repeated exposure to inescapable foot-shock stress (FS), and to examine changes in proposed regulators of the HPT axis, including plasma corticosterone and hypothalamic arcuate nucleus agouti-related protein (AGRP) mRNA levels. Adult male Sprague-Dawley rats were subjected to one daily session of inescapable FS for 14 days. Plasma corticosterone levels were determined during and after the stress on days 1 and 14. Animals were killed on day 15, and trunk blood and brains were collected for measurement of hormone and mRNA levels. Repeated exposure to FS led to a significant decrease in serum levels of 3,5,3′-triiodothyronine (T 3 ) and 3,5,3′,5′-tetraiodothyronine (T 4 ). Stress-induced plasma corticosterone levels were not altered by repeated exposure to the stress. Despite the decrease in peripheral hormone levels, thyrotropin-releasing hormone (TRH) mRNA levels within the paraventricular nucleus of the hypothalamus were not altered by the stress paradigm. Arcuate nucleus AGRP mRNA levels were significantly increased in the animals exposed to repeated FS. Additionally, we noted significant correlations between stress-induced plasma corticosterone levels and components of the HPT axis, including TRH mRNA levels and free T 4 levels. Additionally, there was a significant correlation between AGRP mRNA levels and total T 3 levels. Changes in body weight were also correlated with peripheral corticosterone and TRH mRNA levels. These results suggest that repeated exposure to mild-electric foot-shock causes a decrease in peripheral thyroid hormone levels, and that components of the HPA axis and hypothalamic AGRP may be involved in stress regulation of the HPT.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The contribution of psychosocial stress to the obesity epidemic: an evolutionary approach.

              The Thrifty Gene hypothesis theorizes that during evolution a set of genes has been selected to ensure survival in environments with limited food supply and marked seasonality. Contemporary environments have predictable and unlimited food availability, an attenuated seasonality due to artificial lighting, indoor heating during the winter and air conditioning during the summer, and promote sedentariness and overeating. In this setting the thrifty genes are constantly activated to enhance energy storage. Psychosocial stress and sleep deprivation are other features of modern societies. Stress-induced hypercortisolemia in the setting of unlimited food supply promotes adiposity. Modern man is becoming obese because these ancient mechanisms are efficiently promoting a positive energy balance. We propose that in today's plentifully provisioned societies, where sedentariness and mental stress have become typical traits, chronic activation of the neuroendocrine systems may contribute to the increased prevalence of obesity. We suggest that some of the yet unidentified thrifty genes may be linked to highly conserved energy sensing mechanisms (AMP kinase, mTOR kinase). These hypotheses are testable. Rural societies that are becoming rapidly industrialized and are witnessing a dramatic increase in obesity may provide a historical opportunity to conduct epidemiological studies of the thrifty genotype. In experimental settings, the effects of various forms of psychosocial stress in increasing metabolic efficiency and gene expression can be further tested.
                Bookmark

                Author and article information

                Journal
                Indian J Endocrinol Metab
                IJEM
                Indian Journal of Endocrinology and Metabolism
                Medknow Publications (India )
                2230-8210
                2230-9500
                Jan-Mar 2011
                : 15
                : 1
                : 18-22
                Affiliations
                Department of Medicine, Regional Institute of Medical Sciences, Imphal, India
                [1 ] Department of Physiology, Jawaharlal Nehru Institute of Medical Sciences, Imphal, India
                Author notes
                Corresponding Author: Dr. Salam Ranabir, Singjamei, Chingamakha, Liwa Road, Imphal, India. E-mail: salamranabir@ 123456yahoo.co.in
                Article
                IJEM-15-18
                10.4103/2230-8210.77573
                3079864
                21584161
                Copyright: © Indian Journal of Endocrinology and Metabolism

                This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Categories
                Review Article

                Endocrinology & Diabetes

                graves’ disease, hormones, stress

                Comments

                Comment on this article