14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      In Vitro Reconstitution of Light-harvesting Complexes of Plants and Green Algae

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In plants and green algae, light is captured by the light-harvesting complexes (LHCs), a family of integral membrane proteins that coordinate chlorophylls and carotenoids. In vivo, these proteins are folded with pigments to form complexes which are inserted in the thylakoid membrane of the chloroplast. The high similarity in the chemical and physical properties of the members of the family, together with the fact that they can easily lose pigments during isolation, makes their purification in a native state challenging. An alternative approach to obtain homogeneous preparations of LHCs was developed by Plumley and Schmidt in 1987 1, who showed that it was possible to reconstitute these complexes in vitro starting from purified pigments and unfolded apoproteins, resulting in complexes with properties very similar to that of native complexes. This opened the way to the use of bacterial expressed recombinant proteins for in vitro reconstitution. The reconstitution method is powerful for various reasons: (1) pure preparations of individual complexes can be obtained, (2) pigment composition can be controlled to assess their contribution to structure and function, (3) recombinant proteins can be mutated to study the functional role of the individual residues ( e.g., pigment binding sites) or protein domain ( e.g., protein-protein interaction, folding). This method has been optimized in several laboratories and applied to most of the light-harvesting complexes. The protocol described here details the method of reconstituting light-harvesting complexes in vitro currently used in our laboratory,and examples describing applications of the method are provided.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: not found
          • Article: not found

          Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardi.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sensing and responding to excess light.

            Plants and algae often absorb too much light-more than they can actually use in photosynthesis. To prevent photo-oxidative damage and to acclimate to changes in their environment, photosynthetic organisms have evolved direct and indirect mechanisms for sensing and responding to excess light. Photoreceptors such as phototropin, neochrome, and cryptochrome can sense excess light directly and relay signals for chloroplast movement and gene expression responses. Indirect sensing of excess light through biochemical and metabolic signals can be transduced into local responses within chloroplasts, into changes in nuclear gene expression via retrograde signaling pathways, or even into systemic responses, all of which are associated with photoacclimation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chromophore organization in the higher-plant photosystem II antenna protein CP26.

              The chlorophyll a/b-xanthophyll-protein CP26 complex belongs to the Lhc protein family. It binds nine chlorophylls and two xanthophylls per 26.6 kDa polypeptide. Determination of the characteristics of each binding site is needed for the understanding of functional organization of individual proteins belonging to the photosystem II supramolecular complex. The biochemical and spectroscopic features of native CP26 are presented here together with identification of pigment binding and energy transitions in different sites. The analysis has been performed via a new approach using recombinant CP26 complexes in which the chromophore content has been experimentally modified. Data were interpreted on the basis of homology with CP29 and LHCII complexes, for which detailed knowledge is available from mutation analysis. We propose that one additional Chl b is present in CP26 as compared to CP29 and that it is located in site B2. We also found that in CP26 three chlorophyll binding sites are selective for Chl a, one of them being essential for the folding of the pigment-protein complex. Two xanthophyll binding sites were identified, one of which (L1) is essential for protein folding and specifically binds lutein. The second site (L2) has lower selectivity and can bind any of the xanthophyll species present in thylakoids.
                Bookmark

                Author and article information

                Journal
                J Vis Exp
                J Vis Exp
                JoVE
                Journal of Visualized Experiments : JoVE
                MyJove Corporation
                1940-087X
                2014
                10 October 2014
                10 October 2014
                : 92
                : 51852
                Affiliations
                1Department of Physics and Astronomy, VU University Amsterdam
                Author notes

                Correspondence to: Roberta Croce at r.croce@ 123456vu.nl

                Article
                51852
                10.3791/51852
                4692416
                25350712
                214b51e2-ffde-4411-b50a-66801bdacfcb
                Copyright © 2014, Journal of Visualized Experiments

                This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

                History
                Categories
                Biochemistry

                Uncategorized
                biochemistry,issue 92,reconstitution,photosynthesis,chlorophyll,carotenoids,light harvesting protein,chlamydomonas reinhardtii,arabidopsis thaliana

                Comments

                Comment on this article