14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      New support for an old hypothesis: density affects extra-pair paternity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Density has been suggested to affect variation in extra-pair paternity (EPP) in avian mating systems, because increasing density promotes encounter rates and thus mating opportunities. However, the significance of density affecting EPP variation in intra- and interspecific comparisons has remained controversial, with more support from intraspecific comparisons. Neither experimental nor empirical studies have consistently provided support for the density hypothesis. Testing the density hypothesis is challenging because density measures may not necessarily reflect extra-pair mating opportunities, mate guarding efforts may covary with density, populations studied may differ in migratory behavior and/or climatic conditions, and variation in density may be insufficient. Accounting for these potentially confounding factors, we tested whether EPP rates within and among subpopulations of the reed bunting ( Emberiza schoeniclus) were related to density. Our analyses were based on data from 13 subpopulations studied over 4 years. Overall, 56.4% of totally 181 broods contained at least one extra-pair young (EPY) and 37.1% of totally 669 young were of extra-pair origin. Roughly 90% of the extra-pair fathers were from the adjacent territory or from the territory after the next one. Within subpopulations, the proportion of EPY in broods was positively related to local breeding density. Similarly, among subpopulations, proportion of EPY was positively associated with population density. EPP was absent in subpopulations consisting of single breeding pairs, that is, without extra-pair mating opportunities. Our study confirms that density is an important biological factor, which significantly influences the amount of EPP within and among subpopulations, but also suggests that other mechanisms influence EPP beyond the variation explained by density.

          Related collections

          Most cited references101

          • Record: found
          • Abstract: found
          • Article: not found

          Statistical confidence for likelihood-based paternity inference in natural populations.

          Paternity inference using highly polymorphic codominant markers is becoming common in the study of natural populations. However, multiple males are often found to be genetically compatible with each offspring tested, even when the probability of excluding an unrelated male is high. While various methods exist for evaluating the likelihood of paternity of each nonexcluded male, interpreting these likelihoods has hitherto been difficult, and no method takes account of the incomplete sampling and error-prone genetic data typical of large-scale studies of natural systems. We derive likelihood ratios for paternity inference with codominant markers taking account of typing error, and define a statistic delta for resolving paternity. Using allele frequencies from the study population in question, a simulation program generates criteria for delta that permit assignment of paternity to the most likely male with a known level of statistical confidence. The simulation takes account of the number of candidate males, the proportion of males that are sampled and gaps and errors in genetic data. We explore the potentially confounding effect of relatives and show that the method is robust to their presence under commonly encountered conditions. The method is demonstrated using genetic data from the intensively studied red deer (Cervus elaphus) population on the island of Rum, Scotland. The Windows-based computer program, CERVUS, described in this study is available from the authors. CERVUS can be used to calculate allele frequencies, run simulations and perform parentage analysis using data from all types of codominant markers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The estimation of population differentiation with microsatellite markers.

            Microsatellite markers are routinely used to investigate the genetic structuring of natural populations. The knowledge of how genetic variation is partitioned among populations may have important implications not only in evolutionary biology and ecology, but also in conservation biology. Hence, reliable estimates of population differentiation are crucial to understand the connectivity among populations and represent important tools to develop conservation strategies. The estimation of differentiation is c from Wright's FST and/or Slatkin's RST, an FST -analogue assuming a stepwise mutation model. Both these statistics have their drawbacks. Furthermore, there is no clear consensus over their relative accuracy. In this review, we first discuss the consequences of different temporal and spatial sampling strategies on differentiation estimation. Then, we move to statistical problems directly associated with the estimation of population structuring itself, with particular emphasis on the effects of high mutation rates and mutation patterns of microsatellite loci. Finally, we discuss the biological interpretation of population structuring estimates.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Lonely hearts or sex in the city? Density-dependent effects in mating systems.

              Two very basic ideas in sexual selection are heavily influenced by numbers of potential mates: the evolution of anisogamy, leading to sex role differentiation, and the frequency dependence of reproductive success that tends to equalize primary sex ratios. However, being explicit about the numbers of potential mates is not typical to most evolutionary theory of sexual selection. Here, we argue that this may prevent us from finding the appropriate ecological equilibria that determine the evolutionary endpoints of selection. We review both theoretical and empirical advances on how population density may influence aspects of mating systems such as intrasexual competition, female choice or resistance, and parental care. Density can have strong effects on selective pressures, whether or not there is phenotypic plasticity in individual strategies with respect to density. Mating skew may either increase or decrease with density, which may be aided or counteracted by changes in female behaviour. Switchpoints between alternative mating strategies can be density dependent, and mate encounter rates may influence mate choice (including mutual mate choice), multiple mating, female resistance to male mating attempts, mate searching, mate guarding, parental care, and the probability of divorce. Considering density-dependent selection may be essential for understanding how populations can persist at all despite sexual conflict, but simple models seem to fail to predict the diversity of observed responses in nature. This highlights the importance of considering the interaction between mating systems and population dynamics, and we strongly encourage further work in this area.
                Bookmark

                Author and article information

                Journal
                Ecol Evol
                Ecol Evol
                ece3
                Ecology and Evolution
                Blackwell Publishing Ltd
                2045-7758
                2045-7758
                March 2013
                13 February 2013
                : 3
                : 3
                : 694-705
                Affiliations
                [1 ]University of Zurich, Institute of Evolutionary Biology and Environmental Studies Winterthurerstrasse 190, Zurich, Switzerland, CH-8057
                [2 ]FORNAT AG Universitätstrasse 65, Zurich, Switzerland, CH-8006
                [3 ]Swiss Ornithological Institute Seerose 1, Sempach, Switzerland, CH-6204
                Author notes
                Gilberto Pasinelli, Swiss Ornithological Institute, Seerose 1, CH-6204 Sempach, Switzerland. Tel: +41 (0)41 462 97 58; Fax +41 (0)41 462 97 10; Email: gilberto.pasinelli@ 123456vogelwarte.ch

                Funding Information This study was supported by the Swiss National Science Foundation (grant no. 3100A0-100150/1), Stiftung Zürcher Tierschutz, Fachstelle Naturschutz des Kantons Zürich, Georges and Antoine Claraz-Schenkung, Ala-Fonds zur Förderung der Feldornithologie, Ornithologische Gesellschaft Zürich, and Graf Fabrice von Gundlach und Payne Smith-Stiftung.

                Article
                10.1002/ece3.489
                3605856
                23533071
                214e4ea3-c3bb-494b-85fa-4626d23b2705
                © 2013 Published by Blackwell Publishing Ltd.

                Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation.

                History
                : 05 September 2012
                : 20 December 2012
                : 24 December 2012
                Categories
                Original Research

                Evolutionary Biology
                birds,density,extra-pair parentage,microsatellites,population
                Evolutionary Biology
                birds, density, extra-pair parentage, microsatellites, population

                Comments

                Comment on this article