16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Colorectal Cancer: Molecules and Populations

      JNCI Journal of the National Cancer Institute

      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The epidemiology and molecular biology of colorectal cancer are reviewed with a view to understanding their interrelationship. Risk factors for colorectal neoplasia include a positive family history, meat consumption, smoking, and alcohol consumption. Important inverse associations exist with vegetables, nonsteroidal anti-inflammatory drugs (NSAIDs), hormone replacement therapy, and physical activity. There are several molecular pathways to colorectal cancer, especially the APC (adenomatous polyposis coli)-beta-catenin-Tcf (T-cell factor; a transcriptional activator) pathway and the pathway involving abnormalities of DNA mismatch repair. These are important, both in inherited syndromes (familial adenomatous polyposis [FAP] and hereditary nonpolyposis colorectal cancer [HNPCC], respectively) and in sporadic cancers. Other less well defined pathways exist. Expression of key genes in any of these pathways may be lost by inherited or acquired mutation or by hypermethylation. The roles of several of the environmental exposures in the molecular pathways either are established (e.g., inhibition of cyclooxygenase-2 by NSAIDs) or are suggested (e.g., meat and tobacco smoke as sources of specific blood-borne carcinogens; vegetables as a source of folate, antioxidants, and inducers of detoxifying enzymes). The roles of other factors (e.g., physical activity) remain obscure even when the epidemiology is quite consistent. There is also evidence that some metabolic pathways, e.g., those involving folate and heterocyclic amines, may be modified by polymorphisms in relevant genes, e.g., MTHFR (methylenetetrahydrofolate reductase) and NAT1 (N-acetyltransferase 1) and NAT2. There is at least some evidence that the general host metabolic state can provide a milieu that enhances or reduces the likelihood of cancer progression. Understanding the roles of environmental exposures and host susceptibilities in molecular pathways has implications for screening, treatment, surveillance, and prevention.

          Related collections

          Most cited references 150

          • Record: found
          • Abstract: found
          • Article: not found

          DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1.

          About 90 percent of human pancreatic carcinomas show allelic loss at chromosome 18q. To identify candidate tumor suppressor genes on 18q, a panel of pancreatic carcinomas were analyzed for convergent sites of homozygous deletion. Twenty-five of 84 tumors had homozygous deletions at 18q21.1, a site that excludes DCC (a candidate suppressor gene for colorectal cancer) and includes DPC4, a gene similar in sequence to a Drosophila melanogaster gene (Mad) implicated in a transforming growth factor-beta (TGF-beta)-like signaling pathway. Potentially inactivating mutations in DPC4 were identified in six of 27 pancreatic carcinomas that did not have homozygous deletions at 18q21.1. These results identify DPC4 as a candidate tumor suppressor gene whose inactivation may play a role in pancreatic and possibly other human cancers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            APC mutations occur early during colorectal tumorigenesis.

            Human tumorigenesis is associated with the accumulation of mutations both in oncogenes and in tumour suppressor genes. But in no common adult cancer have the mutations that are critical in the early stages of the tumorigenic process been defined. We have attempted to determine if mutations of the APC gene play such a role in human colorectal tumours, which evolve from small benign tumours (adenomas) to larger malignant tumours (carcinomas) over the course of several decades. Here we report that sequence analysis of 41 colorectal tumours revealed that the majority of colorectal carcinomas (60%) and adenomas (63%) contained a mutated APC gene. Furthermore, the APC gene met two criteria of importance for tumour initiation. First, mutations of this gene were found in the earliest tumours that could be analysed, including adenomas as small as 0.5 cm in diameter. Second, the frequency of such mutations remained constant as tumours progressed from benign to malignant stages. These data provide strong evidence that mutations of the APC gene play a major role in the early development of colorectal neoplasms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Vegetables, fruit, and cancer prevention: a review.

              In this review of the scientific literature on the relationship between vegetable and fruit consumption and risk of cancer, results from 206 human epidemiologic studies and 22 animal studies are summarized. The evidence for a protective effect of greater vegetable and fruit consumption is consistent for cancers of the stomach, esophagus, lung, oral cavity and pharynx, endometrium, pancreas, and colon. The types of vegetables or fruit that most often appear to be protective against cancer are raw vegetables, followed by allium vegetables, carrots, green vegetables, cruciferous vegetables, and tomatoes. Substances present in vegetables and fruit that may help protect against cancer, and their mechanisms, are also briefly reviewed; these include dithiolthiones, isothiocyanates, indole-3-carbinol, allium compounds, isoflavones, protease inhibitors, saponins, phytosterols, inositol hexaphosphate, vitamin C, D-limonene, lutein, folic acid, beta carotene, lycopene, selenium, vitamin E, flavonoids, and dietary fiber. Current US vegetable and fruit intake, which averages about 3.4 servings per day, is discussed, as are possible noncancer-related effects of increased vegetable and fruit consumption, including benefits against cardiovascular disease, diabetes, stroke, obesity, diverticulosis, and cataracts. Suggestions for dietitians to use in counseling persons toward increasing vegetable and fruit intake are presented.
                Bookmark

                Author and article information

                Journal
                JNCI Journal of the National Cancer Institute
                JNCI Journal of the National Cancer Institute
                Oxford University Press (OUP)
                0027-8874
                1460-2105
                June 02 1999
                June 02 1999
                : 91
                : 11
                : 916-932
                Article
                10.1093/jnci/91.11.916
                10359544
                © 1999

                Comments

                Comment on this article