6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      De novo 8p21.3→ p23.3 Duplication With t(4;8)(q35;p21.3) Translocation Associated With Mental Retardation, Autism Spectrum Disorder, and Congenital Heart Defects: Case Report With Literature Review

      case-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Duplications of chromosome 8p lead to rare genetic conditions characterized by variable phenotypes. 8p21 and 8p23 duplications were associated with mental retardation but only 8p23 duplication was associated with heart defects. 8p22→ p21.3 duplications were associated with an autism spectrum disorder in several cases. We present a rare case with a de novo duplication of the entire 8p21.3→ p23.3 region, documented by karyotype, FISH, and array CGH, with t(4;8)(q35;p21.3) translocation in a 7 years-old girl. She was referred for genetic counseling at the age of 20 months due to mild dysmorphic facial features, psychomotor retardation, and a noncyanotic heart defect. Another examination carried out at the age of 5 years, enabled the diagnosis of autism spectrum disorder and attention deficit hyperactivity disorder. Upon re-examination after two years she was diagnosed with autism spectrum disorder, attention deficit hyperactivity disorder, liminal intellect with cognitive disharmony, delay in psychomotor acquisitions, developmental language delay, an instrumental disorder, and motor coordination disorder. Cytogenetic analysis using GTG technique revealed the following karyotype: 46,XX,der(4),t(4;8)(q35;p21.3). The translocation of the duplicated 8pter region to the telomeric region 4q was confirmed by FISH analysis (DJ580L5 probe). Array CGH showed: arr[GRCh37]8p23.3p21.3(125733_22400607) × 3. It identified a terminal duplication, a 22.3 Mb copy number gain of chromosome 8p23.3–p21.3, between 125,733 and 22,400,607. In this case, there is a de novo duplication of a large chromosomal segment, which was translocated to chromosome 4q. Our report provides additional data regarding neuropsychiatric features in chromosome 8p duplication. The phenotypic consequences in our patient allow clinical-cytogenetic correlations and may also reveal candidate genes for the phenotypic features.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Chromosome 8p as a potential hub for developmental neuropsychiatric disorders: implications for schizophrenia, autism and cancer.

          Defects in genetic and developmental processes are thought to contribute susceptibility to autism and schizophrenia. Presumably, owing to etiological complexity identifying susceptibility genes and abnormalities in the development has been difficult. However, the importance of genes within chromosomal 8p region for neuropsychiatric disorders and cancer is well established. There are 484 annotated genes located on 8p; many are most likely oncogenes and tumor-suppressor genes. Molecular genetics and developmental studies have identified 21 genes in this region (ADRA1A, ARHGEF10, CHRNA2, CHRNA6, CHRNB3, DKK4, DPYSL2, EGR3, FGF17, FGF20, FGFR1, FZD3, LDL, NAT2, NEF3, NRG1, PCM1, PLAT, PPP3CC, SFRP1 and VMAT1/SLC18A1) that are most likely to contribute to neuropsychiatric disorders (schizophrenia, autism, bipolar disorder and depression), neurodegenerative disorders (Parkinson's and Alzheimer's disease) and cancer. Furthermore, at least seven nonprotein-coding RNAs (microRNAs) are located at 8p. Structural variants on 8p, such as copy number variants, microdeletions or microduplications, might also contribute to autism, schizophrenia and other human diseases including cancer. In this review, we consider the current state of evidence from cytogenetic, linkage, association, gene expression and endophenotyping studies for the role of these 8p genes in neuropsychiatric disease. We also describe how a mutation in an 8p gene (Fgf17) results in a mouse with deficits in specific components of social behavior and a reduction in its dorsomedial prefrontal cortex. We finish by discussing the biological connections of 8p with respect to neuropsychiatric disorders and cancer, despite the shortcomings of this evidence.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Frequency of small supernumerary marker chromosomes in prenatal, newborn, developmentally retarded and infertility diagnostics.

            In this study the substantial and in part contradictory data available in the literature was collected concerning the frequency of small supernumerary marker chromosomes (sSMC) in the human population in general, and in special subpopulations. One hundred and thirty-two studies on sSMC were reviewed. In summary 1,288,693 cytogenetically studied cases detecting 980 sSMC were compiled. In 132 international surveys there were no ethnic effects detected in the sSMC frequency. sSMC were present in 0.075% of unselected prenatal cases but only in 0.044% of consecutively studied postnatal ones. In infertile subjects, 0.125% were sSMC carriers, distinguishing male from female subjects by a 7.5:1 difference in sSMC frequency for this special group. In developmentally retarded patients the sSMC rate was elevated to 0.288%, similar to prenatal cases with ultrasound abnormalities (0.204%). No increased risk for the presence of sSMC was detected in ICSI-induced pregnancies. Worldwide there are approximately 2.7 x 10(6) living sSMC carriers; 1.8 x 10(6) have a de novo sSMC and approximately 70% of those are clinically normal. Strikingly, 30-50% of pregnancies diagnosed with an sSMC fetus are terminated. This may be connected with the empirical risk that approximately 30% of sSMC carriers manifest clinical abnormalities. Thus, in summary there is a strong need for a better genotype-phenotype correlation enabling better genetic counseling.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Segmental duplications: an 'expanding' role in genomic instability and disease.

              The knowledge that specific genetic diseases are caused by recurrent chromosomal aberrations has indicated that genomic instability might be directly related to the structure of the regions involved. The sequencing of the human genome has directed significant attention towards understanding the molecular basis of such recombination 'hot spots'. Segmental duplications have emerged as a significant factor in the aetiology of disorders that are caused by abnormal gene dosage. These observations bring us closer to understanding the mechanisms and consequences of genomic rearrangement.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Pediatr
                Front Pediatr
                Front. Pediatr.
                Frontiers in Pediatrics
                Frontiers Media S.A.
                2296-2360
                08 July 2020
                2020
                : 8
                : 375
                Affiliations
                [1] 1Department of Microscopic Morphology, Victor Babes University of Medicine and Pharmacy , Timisoara, Romania
                [2] 2Department of Functional Sciences, Victor Babes University of Medicine and Pharmacy , Timisoara, Romania
                [3] 3Center for Translational Research and Systems Medicine, Victor Babes University of Medicine and Pharmacy , Timisoara, Romania
                [4] 4Department of Neurosciences, Victor Babes University of Medicine and Pharmacy , Timisoara, Romania
                [5] 5Department of Psychoneuro Sciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea , Oradea, Romania
                [6] 6Department of Molecular Genetics and Cytogenetics, Cytogenomic Medical Laboratory , Bucharest, Romania
                [7] 7Department of Pediatrics, Victor Babes University of Medicine and Pharmacy , Timisoara, Romania
                Author notes

                Edited by: Enrico Baruffini, University of Parma, Italy

                Reviewed by: Xiu Xu, Fudan University, China; Amal Mahmoud Mohamed, National Research Centre (Egypt), Egypt

                *Correspondence: Ioana Mozos ioana_mozos@ 123456yahoo.com

                This article was submitted to Genetic Disorders, a section of the journal Frontiers in Pediatrics

                †These authors share first authorship

                Article
                10.3389/fped.2020.00375
                7362762
                215b5a8e-34b9-40dd-9525-d21f193b3eef
                Copyright © 2020 Gug, Stoicanescu, Mozos, Nussbaum, Cevei, Stambouli, Pavel and Doros.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 14 March 2020
                : 03 June 2020
                Page count
                Figures: 3, Tables: 1, Equations: 0, References: 41, Pages: 10, Words: 5856
                Categories
                Pediatrics
                Case Report

                8p(21.3–p23.3) duplication,translocation(4;8),de novo,array cgh,fish,mental retardation,autism spectrum disorder,congenital heart defects

                Comments

                Comment on this article