3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transcriptomic response to aquaculture intensification in Nile tilapia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To meet future global demand for fish protein, more fish will need to be farmed using fewer resources, and this will require the selection of nonaggressive individuals that perform well at high densities. Yet, the genetic changes underlying loss of aggression and adaptation to crowding during aquaculture intensification are largely unknown. We examined the transcriptomic response to aggression and crowding in Nile tilapia, one of the oldest and most widespread farmed fish, whose social structure shifts from social hierarchies to shoaling with increasing density. A mirror test was used to quantify aggression and skin darkening (a proxy for stress) of fish reared at low and high densities, and gene expression in the hypothalamus was analysed among the most and least aggressive fish at each density. Fish reared at high density were darker, had larger brains, were less active and less aggressive than those reared at low density and had differentially expressed genes consistent with a reactive stress‐coping style and activation of the hypothalamus–pituitary–interrenal (HPI) axis. Differences in gene expression among aggressive fish were accounted for by density and the interaction between density and aggression levels, whereas for nonaggressive fish differences in gene expression were associated with individual variation in skin brightness and social stress. Thus, the response to crowding in Nile tilapia is context dependent and involves different neuroendocrine pathways, depending on social status. Knowledge of genes associated with the response to crowding may pave the way for more efficient fish domestication, based on the selection of nonaggressive individuals with increasing tolerance to chronic stress necessary for aquaculture intensification.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: not found

          The genomic substrate for adaptive radiation in African cichlid fish

          Cichlid fishes are famous for large, diverse and replicated adaptive radiations in the Great Lakes of East Africa. To understand the molecular mechanisms underlying cichlid phenotypic diversity, we sequenced the genomes and transcriptomes of five lineages of African cichlids: the Nile tilapia (Oreochromis niloticus), an ancestral lineage with low diversity; and four members of the East African lineage: Neolamprologus brichardi/pulcher (older radiation, Lake Tanganyika), Metriaclima zebra (recent radiation, Lake Malawi), Pundamilia nyererei (very recent radiation, Lake Victoria), and Astatotilapia burtoni (riverine species around Lake Tanganyika). We found an excess of gene duplications in the East African lineage compared to tilapia and other teleosts, an abundance of non-coding element divergence, accelerated coding sequence evolution, expression divergence associated with transposable element insertions, and regulation by novel microRNAs. In addition, we analysed sequence data from sixty individuals representing six closely related species from Lake Victoria, and show genome-wide diversifying selection on coding and regulatory variants, some of which were recruited from ancient polymorphisms. We conclude that a number of molecular mechanisms shaped East African cichlid genomes, and that amassing of standing variation during periods of relaxed purifying selection may have been important in facilitating subsequent evolutionary diversification.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Using observation-level random effects to model overdispersion in count data in ecology and evolution

            Overdispersion is common in models of count data in ecology and evolutionary biology, and can occur due to missing covariates, non-independent (aggregated) data, or an excess frequency of zeroes (zero-inflation). Accounting for overdispersion in such models is vital, as failing to do so can lead to biased parameter estimates, and false conclusions regarding hypotheses of interest. Observation-level random effects (OLRE), where each data point receives a unique level of a random effect that models the extra-Poisson variation present in the data, are commonly employed to cope with overdispersion in count data. However studies investigating the efficacy of observation-level random effects as a means to deal with overdispersion are scarce. Here I use simulations to show that in cases where overdispersion is caused by random extra-Poisson noise, or aggregation in the count data, observation-level random effects yield more accurate parameter estimates compared to when overdispersion is simply ignored. Conversely, OLRE fail to reduce bias in zero-inflated data, and in some cases increase bias at high levels of overdispersion. There was a positive relationship between the magnitude of overdispersion and the degree of bias in parameter estimates. Critically, the simulations reveal that failing to account for overdispersion in mixed models can erroneously inflate measures of explained variance (r 2), which may lead to researchers overestimating the predictive power of variables of interest. This work suggests use of observation-level random effects provides a simple and robust means to account for overdispersion in count data, but also that their ability to minimise bias is not uniform across all types of overdispersion and must be applied judiciously.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The “Domestication Syndrome” in Mammals: A Unified Explanation Based on Neural Crest Cell Behavior and Genetics

              Charles Darwin, while trying to devise a general theory of heredity from the observations of animal and plant breeders, discovered that domesticated mammals possess a distinctive and unusual suite of heritable traits not seen in their wild progenitors. Some of these traits also appear in domesticated birds and fish. The origin of Darwin’s “domestication syndrome” has remained a conundrum for more than 140 years. Most explanations focus on particular traits, while neglecting others, or on the possible selective factors involved in domestication rather than the underlying developmental and genetic causes of these traits. Here, we propose that the domestication syndrome results predominantly from mild neural crest cell deficits during embryonic development. Most of the modified traits, both morphological and physiological, can be readily explained as direct consequences of such deficiencies, while other traits are explicable as indirect consequences. We first show how the hypothesis can account for the multiple, apparently unrelated traits of the syndrome and then explore its genetic dimensions and predictions, reviewing the available genetic evidence. The article concludes with a brief discussion of some genetic and developmental questions raised by the idea, along with specific predictions and experimental tests.
                Bookmark

                Author and article information

                Contributors
                c.garciadeleaniz@swansea.ac.uk
                Journal
                Evol Appl
                Evol Appl
                10.1111/(ISSN)1752-4571
                EVA
                Evolutionary Applications
                John Wiley and Sons Inc. (Hoboken )
                1752-4571
                17 July 2019
                October 2019
                : 12
                : 9 ( doiID: 10.1111/eva.v12.9 )
                : 1757-1771
                Affiliations
                [ 1 ] Centre for Sustainable Aquatic Research (CSAR), College of Science Swansea University Swansea UK
                [ 2 ] Université de Perpignan Via Domitia Perpignan France
                [ 3 ] Systemic Physiological and Ecotoxicological Research, Department of Biology University of Antwerp Antwerp Belgium
                Author notes
                [*] [* ] Correspondence

                Carlos Garcia de Leaniz, Centre for Sustainable Aquatic Research (CSAR), College of Science, Swansea University, Swansea SA2 8PP, UK.

                Email: c.garciadeleaniz@ 123456swansea.ac.uk

                Author information
                https://orcid.org/0000-0003-4403-2509
                https://orcid.org/0000-0003-1650-2729
                Article
                EVA12830
                10.1111/eva.12830
                6752142
                31548855
                2161fc9b-5b4d-4c09-8abf-3003be8d7a22
                © 2019 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd

                This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 05 January 2019
                : 30 May 2019
                : 31 May 2019
                Page count
                Figures: 5, Tables: 1, Pages: 15, Words: 11362
                Funding
                Funded by: NRN‐LCEE AquaWales
                Funded by: ERDF WEFO SMARTAQUA
                Categories
                Original Article
                Original Articles
                Custom metadata
                2.0
                eva12830
                October 2019
                Converter:WILEY_ML3GV2_TO_NLMPMC version:5.6.9 mode:remove_FC converted:19.09.2019

                Evolutionary Biology
                aggression,aquaculture intensification,crowding,fish domestication,gene expression,hpi axis,stress response

                Comments

                Comment on this article