23
views
0
recommends
+1 Recommend
3 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Targeting TMPRSS2 and Cathepsin B/L together may be synergistic against SARS-CoV-2 infection

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The entry of SARS-CoV-2 into target cells requires the activation of its surface spike protein, S, by host proteases. The host serine protease TMPRSS2 and cysteine proteases Cathepsin B/L can activate S, making two independent entry pathways accessible to SARS-CoV-2. Blocking the proteases prevents SARS-CoV-2 entry in vitro. This blockade may be achieved in vivo through ‘repurposing’ drugs, a potential treatment option for COVID-19 that is now in clinical trials. Here, we found, surprisingly, that drugs targeting the two pathways, although independent, could display strong synergy in blocking virus entry. We predicted this synergy first using a mathematical model of SARS-CoV-2 entry and dynamics in vitro. The model considered the two pathways explicitly, let the entry efficiency through a pathway depend on the corresponding protease expression level, which varied across cells, and let inhibitors compromise the efficiency in a dose-dependent manner. The synergy predicted was novel and arose from effects of the drugs at both the single cell and the cell population levels. Validating our predictions, available in vitro data on SARS-CoV-2 and SARS-CoV entry displayed this synergy. Further, analysing the data using our model, we estimated the relative usage of the two pathways and found it to vary widely across cell lines, suggesting that targeting both pathways in vivo may be important and synergistic given the broad tissue tropism of SARS-CoV-2. Our findings provide insights into SARS-CoV-2 entry into target cells and may help improve the deployability of drug combinations targeting host proteases required for the entry.

          Author summary

          The COVID-19 pandemic has triggered urgent efforts to repurpose available drugs for the treatment of SARS-CoV-2 infection. Synergistic drug combinations are particularly desirable because they allow the achievement of desired efficacies with minimal toxicities. Here, we predict that drugs targeting the host proteases, TMPRSS2 and Cathepsin B/L, which facilitate SARS-CoV-2 entry into cells through independent pathways, would be synergistic. We identified the synergy using a mathematical model and found evidence for it in available in vitro data. We found the estimated usage of the two pathways to vary vastly across cell types, highlighting the need to target both pathways. Our findings would help maximize the impact of combination therapies targeting host proteases involved in SARS-CoV-2 entry, which are currently in clinical trials.

          Related collections

          Most cited references81

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          A new coronavirus associated with human respiratory disease in China

          Emerging infectious diseases, such as severe acute respiratory syndrome (SARS) and Zika virus disease, present a major threat to public health 1–3 . Despite intense research efforts, how, when and where new diseases appear are still a source of considerable uncertainty. A severe respiratory disease was recently reported in Wuhan, Hubei province, China. As of 25 January 2020, at least 1,975 cases had been reported since the first patient was hospitalized on 12 December 2019. Epidemiological investigations have suggested that the outbreak was associated with a seafood market in Wuhan. Here we study a single patient who was a worker at the market and who was admitted to the Central Hospital of Wuhan on 26 December 2019 while experiencing a severe respiratory syndrome that included fever, dizziness and a cough. Metagenomic RNA sequencing 4 of a sample of bronchoalveolar lavage fluid from the patient identified a new RNA virus strain from the family Coronaviridae, which is designated here ‘WH-Human 1’ coronavirus (and has also been referred to as ‘2019-nCoV’). Phylogenetic analysis of the complete viral genome (29,903 nucleotides) revealed that the virus was most closely related (89.1% nucleotide similarity) to a group of SARS-like coronaviruses (genus Betacoronavirus, subgenus Sarbecovirus) that had previously been found in bats in China 5 . This outbreak highlights the ongoing ability of viral spill-over from animals to cause severe disease in humans.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Remdesivir for the Treatment of Covid-19 — Final Report

            Abstract Background Although several therapeutic agents have been evaluated for the treatment of coronavirus disease 2019 (Covid-19), none have yet been shown to be efficacious. Methods We conducted a double-blind, randomized, placebo-controlled trial of intravenous remdesivir in adults hospitalized with Covid-19 with evidence of lower respiratory tract involvement. Patients were randomly assigned to receive either remdesivir (200 mg loading dose on day 1, followed by 100 mg daily for up to 9 additional days) or placebo for up to 10 days. The primary outcome was the time to recovery, defined by either discharge from the hospital or hospitalization for infection-control purposes only. Results A total of 1063 patients underwent randomization. The data and safety monitoring board recommended early unblinding of the results on the basis of findings from an analysis that showed shortened time to recovery in the remdesivir group. Preliminary results from the 1059 patients (538 assigned to remdesivir and 521 to placebo) with data available after randomization indicated that those who received remdesivir had a median recovery time of 11 days (95% confidence interval [CI], 9 to 12), as compared with 15 days (95% CI, 13 to 19) in those who received placebo (rate ratio for recovery, 1.32; 95% CI, 1.12 to 1.55; P<0.001). The Kaplan-Meier estimates of mortality by 14 days were 7.1% with remdesivir and 11.9% with placebo (hazard ratio for death, 0.70; 95% CI, 0.47 to 1.04). Serious adverse events were reported for 114 of the 541 patients in the remdesivir group who underwent randomization (21.1%) and 141 of the 522 patients in the placebo group who underwent randomization (27.0%). Conclusions Remdesivir was superior to placebo in shortening the time to recovery in adults hospitalized with Covid-19 and evidence of lower respiratory tract infection. (Funded by the National Institute of Allergy and Infectious Diseases and others; ACTT-1 ClinicalTrials.gov number, NCT04280705.)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A SARS-CoV-2 Protein Interaction Map Reveals Targets for Drug-Repurposing

              SUMMARY The novel coronavirus SARS-CoV-2, the causative agent of COVID-19 respiratory disease, has infected over 2.3 million people, killed over 160,000, and caused worldwide social and economic disruption 1,2 . There are currently no antiviral drugs with proven clinical efficacy, nor are there vaccines for its prevention, and these efforts are hampered by limited knowledge of the molecular details of SARS-CoV-2 infection. To address this, we cloned, tagged and expressed 26 of the 29 SARS-CoV-2 proteins in human cells and identified the human proteins physically associated with each using affinity-purification mass spectrometry (AP-MS), identifying 332 high-confidence SARS-CoV-2-human protein-protein interactions (PPIs). Among these, we identify 66 druggable human proteins or host factors targeted by 69 compounds (29 FDA-approved drugs, 12 drugs in clinical trials, and 28 preclinical compounds). Screening a subset of these in multiple viral assays identified two sets of pharmacological agents that displayed antiviral activity: inhibitors of mRNA translation and predicted regulators of the Sigma1 and Sigma2 receptors. Further studies of these host factor targeting agents, including their combination with drugs that directly target viral enzymes, could lead to a therapeutic regimen to treat COVID-19.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Formal analysisRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: Formal analysisRole: VisualizationRole: Writing – review & editing
                Role: ConceptualizationRole: Formal analysisRole: Funding acquisitionRole: Writing – original draftRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS Comput Biol
                PLoS Comput Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, CA USA )
                1553-734X
                1553-7358
                8 December 2020
                December 2020
                : 16
                : 12
                : e1008461
                Affiliations
                [1 ] Clem Jones Centre for Ageing Dementia Research, Queesnsland Brain Institute, The University of Queensland, Brisbane, Australia
                [2 ] Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
                [3 ] Centre for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India
                UNSW Australia, AUSTRALIA
                Author notes

                The authors have declared that no competing interests exist.

                [¤]

                Current address: Certara QSP, Certara UK Limited, Sheffield, United Kingdom

                Author information
                https://orcid.org/0000-0001-5569-8731
                https://orcid.org/0000-0002-0785-8187
                https://orcid.org/0000-0002-2145-9828
                Article
                PCOMPBIOL-D-20-00870
                10.1371/journal.pcbi.1008461
                7748278
                33290397
                21660ce8-ab30-4817-a03c-4636b046c39b
                © 2020 Padmanabhan et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 22 May 2020
                : 22 October 2020
                Page count
                Figures: 6, Tables: 1, Pages: 28
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/501100009053, The Wellcome Trust DBT India Alliance;
                Award ID: Senior Fellowship IA/S/14/1/501307
                Award Recipient :
                This work was supported by the DBT/Wellcome Trust India Alliance Senior Fellowship IA/S/14/1/501307 to NMD. URL: https://www.indiaalliance.org/. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and life sciences
                Organisms
                Viruses
                RNA viruses
                Coronaviruses
                SARS coronavirus
                SARS CoV 2
                Biology and life sciences
                Microbiology
                Medical microbiology
                Microbial pathogens
                Viral pathogens
                Coronaviruses
                SARS coronavirus
                SARS CoV 2
                Medicine and health sciences
                Pathology and laboratory medicine
                Pathogens
                Microbial pathogens
                Viral pathogens
                Coronaviruses
                SARS coronavirus
                SARS CoV 2
                Biology and life sciences
                Organisms
                Viruses
                Viral pathogens
                Coronaviruses
                SARS coronavirus
                SARS CoV 2
                Biology and Life Sciences
                Biochemistry
                Enzymology
                Enzymes
                Proteases
                Biology and Life Sciences
                Biochemistry
                Proteins
                Enzymes
                Proteases
                Biology and life sciences
                Organisms
                Viruses
                RNA viruses
                Coronaviruses
                SARS coronavirus
                Biology and life sciences
                Microbiology
                Medical microbiology
                Microbial pathogens
                Viral pathogens
                Coronaviruses
                SARS coronavirus
                Medicine and health sciences
                Pathology and laboratory medicine
                Pathogens
                Microbial pathogens
                Viral pathogens
                Coronaviruses
                SARS coronavirus
                Biology and life sciences
                Organisms
                Viruses
                Viral pathogens
                Coronaviruses
                SARS coronavirus
                Biology and Life Sciences
                Microbiology
                Virology
                Viral Transmission and Infection
                Viral Entry
                Biology and Life Sciences
                Microbiology
                Virology
                Viral Structure
                Virions
                Biology and life sciences
                Organisms
                Viruses
                RNA viruses
                Coronaviruses
                Biology and Life Sciences
                Microbiology
                Medical Microbiology
                Microbial Pathogens
                Viral Pathogens
                Coronaviruses
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Pathogens
                Microbial Pathogens
                Viral Pathogens
                Coronaviruses
                Biology and Life Sciences
                Organisms
                Viruses
                Viral Pathogens
                Coronaviruses
                Medicine and Health Sciences
                Pharmaceutics
                Dose Prediction Methods
                Medicine and Health Sciences
                Medical Conditions
                Infectious Diseases
                Viral Diseases
                Covid 19
                Custom metadata
                vor-update-to-uncorrected-proof
                2020-12-18
                All relevant data are within the manuscript and its Supporting Information files.
                COVID-19

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article