3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Recycling of Chrome-Tanned Leather and Its Utilization as Polymeric Materials and in Polymer-Based Composites: A Review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tanneries generate large amounts of solid and liquid wastes, which contain harmful chemical compounds in the environment, such as chromium, that is used in the tanning process. Until now, they have been almost completely dumped in landfills. Thus, finding eco-sustainable and innovative alternatives for the management and disposal of these wastes is becoming a huge challenge for tanneries and researchers around the world. In particular, the scientific and industrial communities have started using wastes to produce new materials exploiting the characteristics of leather, which are strongly connected with the macromolecular structure of its main component, collagen. None of the reviews on leather waste management actually present in the scientific literature report in detail the use of leather to make composite materials and the mechanical properties of the materials obtained, which are of fundamental importance for an effective industrial exploitation of leather scraps. This comprehensive review reports for the first time the state of the art of the strategies related to the recovery and valorization of both hydrolyzed collagen and leather waste for the realization of composite materials, reporting in detail the properties and the industrial applications of the materials obtained. In the conclusion section, the authors provide practical implications for industry in relation to sustainability and identify research gaps that can guide future authors and industries in their work.

          Related collections

          Most cited references126

          • Record: found
          • Abstract: found
          • Article: not found

          Collagen structure and stability.

          Collagen is the most abundant protein in animals. This fibrous, structural protein comprises a right-handed bundle of three parallel, left-handed polyproline II-type helices. Much progress has been made in elucidating the structure of collagen triple helices and the physicochemical basis for their stability. New evidence demonstrates that stereoelectronic effects and preorganization play a key role in that stability. The fibrillar structure of type I collagen-the prototypical collagen fibril-has been revealed in detail. Artificial collagen fibrils that display some properties of natural collagen fibrils are now accessible using chemical synthesis and self-assembly. A rapidly emerging understanding of the mechanical and structural properties of native collagen fibrils will guide further development of artificial collagenous materials for biomedicine and nanotechnology.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Toxicity and Carcinogenicity of Chromium Compounds in Humans

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Crystal and molecular structure of a collagen-like peptide at 1.9 A resolution.

              The structure of a protein triple helix has been determined at 1.9 angstrom resolution by x-ray crystallographic studies of a collagen-like peptide containing a single substitution of the consensus sequence. This peptide adopts a triple-helical structure that confirms the basic features determined from fiber diffraction studies on collagen: supercoiling of polyproline II helices and interchain hydrogen bonding that follows the model II of Rich and Crick. In addition, the structure provides new information concerning the nature of this protein fold. Each triple helix is surrounded by a cylinder of hydration, with an extensive hydrogen bonding network between water molecules and peptide acceptor groups. Hydroxyproline residues have a critical role in this water network. The interaxial spacing of triple helices in the crystal is similar to that in collagen fibrils, and the water networks linking adjacent triple helices in the crystal structure are likely to be present in connective tissues. The breaking of the repeating (X-Y-Gly)n pattern by a Gly-->Ala substitution results in a subtle alteration of the conformation, with a local untwisting of the triple helix. At the substitution site, direct interchain hydrogen bonds are replaced with interstitial water bridges between the peptide groups. Similar conformational changes may occur in Gly-->X mutated collagens responsible for the diseases osteogenesis imperfecta, chondrodysplasias, and Ehlers-Danlos syndrome IV.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Polymers (Basel)
                Polymers (Basel)
                polymers
                Polymers
                MDPI
                2073-4360
                29 January 2021
                February 2021
                : 13
                : 3
                : 429
                Affiliations
                Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, 40131 Bologna, Italy; alessandro.nanni11@ 123456gmail.com
                Author notes
                [* ]Correspondence: mariafederica.paris2@ 123456unibo.it (M.P.); martino.colonna@ 123456unibo.it (M.C.); Tel.: +39-051-20-9-0367 (M.P.)
                Author information
                https://orcid.org/0000-0003-4768-7236
                https://orcid.org/0000-0002-5728-6332
                Article
                polymers-13-00429
                10.3390/polym13030429
                7866253
                33572866
                21687f6b-4881-4e59-9cea-69e67f260063
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 31 December 2020
                : 27 January 2021
                Categories
                Review

                biocomposites,collagen,leather,recycling,sustainability,mechanical reinforcement,fillers

                Comments

                Comment on this article