634
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Uncontrolled extracellular matrix production by fibroblasts in response to tissue injury contributes to fibrotic diseases, such as idiopathic pulmonary fibrosis (IPF), a progressive and ultimately fatal process that currently has no cure. Although dysregulation of miRNAs is known to be involved in a variety of pathophysiologic processes, the role of miRNAs in fibrotic lung diseases is unclear. In this study, we found up-regulation of miR-21 in the lungs of mice with bleomycin-induced fibrosis and also in the lungs of patients with IPF. Increased miR-21 expression was primarily localized to myofibroblasts. Administration of miR-21 antisense probes diminished the severity of experimental lung fibrosis in mice, even when treatment was started 5–7 d after initiation of pulmonary injury. TGF-β1, a central pathological mediator of fibrotic diseases, enhanced miR-21 expression in primary pulmonary fibroblasts. Increasing miR-21 levels promoted, whereas knocking down miR-21 attenuated, the pro-fibrogenic activity of TGF-β1 in fibroblasts. A potential mechanism for the role of miR-21 in fibrosis is through regulating the expression of an inhibitory Smad, Smad7. These experiments demonstrate an important role for miR-21 in fibrotic lung diseases and also suggest a novel approach using miRNA therapeutics in treating clinically refractory fibrotic diseases, such as IPF.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases.

          Fibroproliferative diseases, including the pulmonary fibroses, systemic sclerosis, liver cirrhosis, cardiovascular disease, progressive kidney disease, and macular degeneration, are a leading cause of morbidity and mortality and can affect all tissues and organ systems. Fibrotic tissue remodeling can also influence cancer metastasis and accelerate chronic graft rejection in transplant recipients. Nevertheless, despite its enormous impact on human health, there are currently no approved treatments that directly target the mechanism(s) of fibrosis. The primary goals of this Review series on fibrotic diseases are to discuss some of the major fibroproliferative diseases and to identify the common and unique mechanisms of fibrogenesis that might be exploited in the development of effective antifibrotic therapies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            SMAD proteins control DROSHA-mediated microRNA maturation.

            MicroRNAs (miRNAs) are small non-coding RNAs that participate in the spatiotemporal regulation of messenger RNA and protein synthesis. Aberrant miRNA expression leads to developmental abnormalities and diseases, such as cardiovascular disorders and cancer; however, the stimuli and processes regulating miRNA biogenesis are largely unknown. The transforming growth factor beta (TGF-beta) and bone morphogenetic protein (BMP) family of growth factors orchestrates fundamental biological processes in development and in the homeostasis of adult tissues, including the vasculature. Here we show that induction of a contractile phenotype in human vascular smooth muscle cells by TGF-beta and BMPs is mediated by miR-21. miR-21 downregulates PDCD4 (programmed cell death 4), which in turn acts as a negative regulator of smooth muscle contractile genes. Surprisingly, TGF-beta and BMP signalling promotes a rapid increase in expression of mature miR-21 through a post-transcriptional step, promoting the processing of primary transcripts of miR-21 (pri-miR-21) into precursor miR-21 (pre-miR-21) by the DROSHA (also known as RNASEN) complex. TGF-beta- and BMP-specific SMAD signal transducers are recruited to pri-miR-21 in a complex with the RNA helicase p68 (also known as DDX5), a component of the DROSHA microprocessor complex. The shared cofactor SMAD4 is not required for this process. Thus, regulation of miRNA biogenesis by ligand-specific SMAD proteins is critical for control of the vascular smooth muscle cell phenotype and potentially for SMAD4-independent responses mediated by the TGF-beta and BMP signalling pathways.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              NADPH Oxidase-4 Mediates Myofibroblast Activation and Fibrogenic Responses to Lung Injury

              The NADPH oxidase (NOX) family of enzymes, which catalyze the reduction of O2 to form reactive oxygen species (ROS), have increased in number during eukaryotic evolution1,2. Seven isoforms of the NOX gene family have been identified in mammals; however, specific roles of NOX enzymes in mammalian physiology and pathophysiology have not been fully elucidated3,4. The best established physiological role of NOX enzymes is in host defense against pathogen invasion in diverse species, including plants5,6. The prototypical member of this family, NOX2 (gp91 phox ), is expressed in phagocytic cells and mediates microbicidal activities7,8. Here, we report a role for the NOX4 isoform in tissue repair functions of myofibroblasts and fibrogenesis. Transforming growth factor-β1 (TGF-β1) induces NOX4 expression in lung mesenchymal cells by a SMAD3-dependent mechanism. NOX4-dependent generation of hydrogen peroxide (H2O2) is required for TGF-β1-induced myofibroblast differentiation, extracellular matrix (ECM) production, and contractility. NOX4 is upregulated in lungs of mice subjected to non-infectious injury and in human idiopathic pulmonary fibrosis (IPF). Genetic or pharmacologic targeting of NOX4 abrogates fibrogenesis in two different murine models of lung injury. These studies support a novel function for NOX4 in tissue fibrogenesis and provide proof-of-concept for therapeutic targeting of NOX4 in recalcitrant fibrotic disorders.
                Bookmark

                Author and article information

                Journal
                J Exp Med
                J. Exp. Med
                jem
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                2 August 2010
                : 207
                : 8
                : 1589-1597
                Affiliations
                [1 ]Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
                [2 ]Dorothy P. and Richard P. Simmons Center for Interstitial Lung Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
                Author notes
                CORRESPONDENCE Gang Liu: gliu@ 123456uab.edu
                Article
                20100035
                10.1084/jem.20100035
                2916139
                20643828
                21692b8b-403e-4891-a4c9-b0d088096f65
                © 2010 Liu et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                History
                : 5 January 2010
                : 23 June 2010
                Categories
                Brief Definitive Report

                Medicine
                Medicine

                Comments

                Comment on this article