5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Frequency of CYP2C9 ( *2, *3 and IVS8-109A>T) allelic variants, and their clinical implications, among Mexican patients with diabetes mellitus type 2 undergoing treatment with glibenclamide and metformin

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The majority of Mexican patients with diabetes mellitus type 2 (DMT2) (67.9-85.0%) are prescribed sulphonylureas (SUs), which are metabolized by cytochrome P450 2C9 (abbreviated as CYP2C9). SUs are a type of oral anti-diabetic compound which inhibit ATP-sensitive potassium channels, thus inducing glucose-independent insulin release by the β-pancreatic cells. The wide variability reported in SU responses has been attributed to the polymorphisms of CYP2C9. The present study aimed to describe CYP2C9 polymorphisms (*2, *3 and IVS8-109T) within a sample of Mexican patients with DMT2, while suggesting the potential clinical implications in terms of glibenclamide response variability. From a sample of 248 patients with DMT2 who initially consented to be studied, those ultimately included in the study were treated with glibenclamide (n=11), glibenclamide combined with metformin (n=112) or metformin (n=76), and were subsequently genotyped using a reverse transcription-quantitative polymerase chain reaction (PCR), end-point allelic discrimination and PCR amplifying enzymatic restriction fragment long polymorphism. Clinical data were gathered through medical record revision. The frequencies revealed were as follows: CYP2C9*1/ *1, 87.5%; *1/ *2, 6.5%; *1/ *3, 5.2%; and CYP2C9, IVS8-109A>T, 16.1%. Glibenclamide significantly reduced the level of pre-prandial glucose (P<0.01) and the percentage of glycated hemoglobin (%HbA1c; P<0.01) for IVS8-109A>T compared with combined glibenclamide and metformin treatment. Concerning the various treatments with respect to the different genotypes, the percentages obtained were as follows: Glibenclamide A/ A, HbA1c<6.5=33.3%; glibenclamide + metformin A/ A, HbA1c<6.5=24.6%; glibenclamide A/ T, HbA1c<6.5=33.3%; glibenclamide + metformin A/ T, HbA1c<6.5=25%; glibenclamide T/ T, HbA1c<6.5=100%; and glibenclamide + metformin T/ T, HbA1c<6.5=12.5%. Altogether, these results revealed that, although genetically customized prescriptions remain a desirable goal to increase the chances of therapeutic success, within the studied population neither allelic variants nor dosages demonstrated a clear association with biomarker levels. A key limitation of the present study was the lack of ability to quantify either the plasma concentrations of SU or their metabolites; therefore, further, precise experimental and observational studies are required.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: not found
          • Article: not found

          Metformin pathways: pharmacokinetics and pharmacodynamics.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genetic polymorphism of the human cytochrome P450 2C9 gene and its clinical significance.

            Human cytochrome P450 2C9 (CYP2C9) accounts for approximately 20% of total hepatic CYP content and metabolizes approximately 15% clinically used drugs including S-warfarin, tolbutamide, phenytoin, losartan, diclofenac, and celecoxib. To date, there are at least 33 variants of CYP2C9 (*1B through to *34) being identified. CYP2C9*2 and CYP2C9*3 differ from the wild-type CYP2C9*1 by a single point mutation: CYP2C9*2 is characterised by a 430C>T exchange in exon 3 resulting in an Arg144Cys amino acid substitution, whereas CYP2C9*3 shows an exchange of 1075A>C in exon 7 causing an Ile359Leu substitution in the catalytic site of the enzyme. CYP2C9*2 is frequent among Caucasians with approximately 1% of the population being homozygous carriers and 22% heterozygous. The corresponding figures for the CYP2C9*3 allele are 0.4% and 15%, respectively. Worldwide, a number of other variants have also to be considered. The CYP2C9 polymorphisms are relevant for the efficacy and adverse effects of numerous nonsteroidal anti-inflammatory agents, sulfonylurea antidiabetic drugs and, most critically, oral anticoagulants belonging to the class of vitamin K epoxide reductase inhibitors. Numerous clinical studies have shown that the CYP2C9 polymorphism should be considered in warfarin therapy and practical algorithms how to consider it in therapy are available. These studies have highlighted the importance of the CYP2C9*2 and *3 alleles. Warfarin has served as a practical example of how pharmacogenetics can be utilized to achieve maximum efficacy and minimum toxicity. Polymorphisms in CYP2C9 have the potential to affect the toxicity of CYP2C9 drugs with somewhat lower therapeutic indices such as warfarin, phenytoin, and certain antidiabetic drugs. CYP2C9 is one of the clinically significant drug metabolising enzymes that demonstrates genetic variants with significant phenotype and clinical outcomes. Genetic testing of CYP2C9 is expected to have a role in predicting drug clearance and implementing individualized pharmacotherapy. Prospective clinical studies with large samples are required to establish gene-dose and gene-effect relatiohsips for CYP2C9.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effect of genetic polymorphisms in cytochrome p450 (CYP) 2C9 and CYP2C8 on the pharmacokinetics of oral antidiabetic drugs: clinical relevance.

              Type 2 diabetes mellitus affects up to 8% of the adult population in Western countries. Treatment of this disease with oral antidiabetic drugs is characterised by considerable interindividual variability in pharmacokinetics, clinical efficacy and adverse effects. Genetic factors are known to contribute to individual differences in bioavailability, drug transport, metabolism and drug action. Only scarce data exist on the clinical implications of this genetic variability on adverse drug effects or clinical outcomes in patients taking oral antidiabetics. The polymorphic enzyme cytochrome P450 (CYP) 2C9 is the main enzyme catalysing the biotransformation of sulphonylureas. Total oral clearance of all studied sulphonylureas (tolbutamide, glibenclamide [glyburide], glimepiride, glipizide) was only about 20% in persons with the CYP2C9*3/*3 genotype compared with carriers of the wild-type genotype CYP2C9*1/*1, and clearance in the heterozygous carriers was between 50% and 80% of that of the wild-type genotypes. For reasons not completely known, the resulting differences in drug effects were much less pronounced. Nevertheless, CYP2C9 genotype-based dose adjustments may reduce the incidence of adverse effects. The magnitude of how doses might be adjusted can be derived from pharmacokinetic studies. The meglitinide-class drug nateglinide is metabolised by CYP2C9. According to the pharmacokinetic data, moderate dose adjustments based on CYP2C9 genotypes may help in reducing interindividual variability in the antihyperglycaemic effects of nateglinide. Repaglinide is metabolised by CYP2C8 and, according to clinical studies, CYP2C8*3 carriers had higher clearance than carriers of the wild-type genotypes; however, this was not consistent with in vitro data and therefore further studies are needed. CYP2C8*3 is closely linked with CYP2C9*2. CYP2C8 and CYP3A4 are the main enzymes catalysing biotransformation of the thiazolidinediones troglitazone and pioglitazone, whereas rosiglitazone is metabolised by CYP2C9 and CYP2C8. The biguanide metformin is not significantly metabolised but polymorphisms in the organic cation transporter (OCT) 1 and OCT2 may determine its pharmacokinetic variability. In conclusion, pharmacogenetic variability plays an important role in the pharmacokinetics of oral antidiabetic drugs; however, to date, the impact of this variability on clinical outcomes in patients is mostly unknown and prospective studies on the medical benefit of CYP genotyping are required.
                Bookmark

                Author and article information

                Journal
                Biomed Rep
                Biomed Rep
                BR
                Biomedical Reports
                D.A. Spandidos
                2049-9434
                2049-9442
                May 2019
                04 April 2019
                04 April 2019
                : 10
                : 5
                : 283-295
                Affiliations
                [1 ]Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
                [2 ]Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
                [3 ]Centro de Investigación Clínica Área de Badajoz, SES Hospital Universitario, Universidad de Extremadura, Badajoz 06071, Spain
                [4 ]Centro de Salud T‑III Portales, Servicios de Salud Gobierno de la Ciudad de México, Ciudad de México 03660, México
                Author notes
                Correspondence to: Dr Juan Arcadio Molina-Guarneros, Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenue Universidad 3000, Ciudad de México 04510, México molina_ja2007@ 123456yahoo.com.mx
                Article
                BR-0-0-1204
                10.3892/br.2019.1204
                6489535
                216e53f5-0cb0-4dba-b792-778bfdef307f
                Copyright: © Cuautle-Rodríguez et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 29 August 2018
                : 15 March 2019
                Categories
                Articles

                diabetes,glibenclamide,metformin,glycated hemoglobin a1c,cytochrome p450 2c9

                Comments

                Comment on this article