69
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Oxygen Stress: A Regulator of Apoptosis in Yeast

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Oxygen radicals are important components of metazoan apoptosis. We have found that apoptosis can be induced in the yeast Saccharomyces cerevisiae by depletion of glutathione or by low external doses of H 2O 2. Cycloheximide prevents apoptotic death revealing active participation of the cell. Yeast can also be triggered into apoptosis by a mutation in CDC48 or by expression of mammalian bax. In both cases, we show oxygen radicals to accumulate in the cell, whereas radical depletion or hypoxia prevents apoptosis. These results suggest that the generation of oxygen radicals is a key event in the ancestral apoptotic pathway and offer an explanation for the mechanism of bax-induced apoptosis in the absence of any established apoptotic gene in yeast.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation

          Programmed cell death (PCD) plays a key role in developmental biology and in maintenance of the steady state in continuously renewing tissues. Currently, its existence is inferred mainly from gel electrophoresis of a pooled DNA extract as PCD was shown to be associated with DNA fragmentation. Based on this observation, we describe here the development of a method for the in situ visualization of PCD at the single-cell level, while preserving tissue architecture. Conventional histological sections, pretreated with protease, were nick end labeled with biotinylated poly dU, introduced by terminal deoxy- transferase, and then stained using avidin-conjugated peroxidase. The reaction is specific, only nuclei located at positions where PCD is expected are stained. The initial screening includes: small and large intestine, epidermis, lymphoid tissues, ovary, and other organs. A detailed analysis revealed that the process is initiated at the nuclear periphery, it is relatively short (1-3 h from initiation to cell elimination) and that PCD appears in tissues in clusters. The extent of tissue-PCD revealed by this method is considerably greater than apoptosis detected by nuclear morphology, and thus opens the way for a variety of studies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bcl-2 functions in an antioxidant pathway to prevent apoptosis.

            Bcl-2 inhibits most types of apoptotic cell death, implying a common mechanism of lethality. Bcl-2 is localized to intracellular sites of oxygen free radical generation including mitochondria, endoplasmic reticula, and nuclear membranes. Antioxidants that scavenge peroxides, N-acetylcysteine and glutathione peroxidase, countered apoptotic death, while manganese superoxide dismutase did not. Bcl-2 protected cells from H2O2- and menadione-induced oxidative deaths. Bcl-2 did not prevent the cyanide-resistant oxidative burst generated by menadione. Two model systems of apoptosis showed no increment in cyanide-resistant respiration, and generation of endogenous peroxides continued at an inherent rate that was unaltered by Bcl-2. Following an apoptotic signal, cells sustained progressive lipid peroxidation. Overexpression of Bcl-2 functioned to suppress lipid peroxidation completely. We propose a model in which Bcl-2 regulates an antioxidant pathway at sites of free radical generation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bax-deficient mice with lymphoid hyperplasia and male germ cell death.

              BAX, a heterodimeric partner of BCL2, counters BCL2 and promotes apoptosis in gain-of-function experiments. A Bax knockout mouse was generated that proved viable but displayed lineage-specific aberrations in cell death. Thymocytes and B cells in this mouse displayed hyperplasia, and Bax-deficient ovaries contained unusual atretic follicles with excess granulosa cells. In contrast, Bax-deficient males were infertile as a result of disordered seminiferous tubules with an accumulation of atypical premeiotic germ cells, but no mature haploid sperm. Multinucleated giant cells and dysplastic cells accompanied massive cell death. Thus, the loss of Bax results in hyperplasia or hypoplasia, depending on the cellular context.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                17 May 1999
                : 145
                : 4
                : 757-767
                Affiliations
                [* ]Physiologisch-Chemisches Institut, Universität Tübingen, 72076 Tübingen, Germany; []Anatomisches Institut, Universität Tübingen, 72074 Tübingen, Germany; [§ ]Institut für Biochemie, Universität Stuttgart, 70569 Stuttgart, Germany; []Johann Wolfgang Goethe-Universität, 60590 Frankfurt am Main, Germany; and []Friedrich-Miescher-Laboratorium der Max-Planck-Gesellschaft, 72076 Tübingen, Germany
                Author notes

                Address correspondence to Kai-Uwe Fröhlich, Physiologisch-Chemisches Institut, Universität Tübingen, Hoppe-Seyler-Straße 4, 72076 Tübingen, Germany. Tel.: 49-7071-2973360. Fax: 49-7071-295565. E-mail: kaifr@ 123456uni-tuebingen.de

                Article
                10.1083/JCB.145.4.757
                2133192
                10330404
                216fd6c5-5da4-485e-aff9-4c6479273401
                Copyright @ 1999
                History
                : 1 September 1998
                : 2 April 1999
                Categories
                Regular Articles

                Cell biology
                apoptosis,glutathione,oxygen stress,reactive oxygen species,saccharomyces cerevisiae
                Cell biology
                apoptosis, glutathione, oxygen stress, reactive oxygen species, saccharomyces cerevisiae

                Comments

                Comment on this article