0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Grape seed proanthocyanidins protect against streptozotocin-induced diabetic nephropathy by attenuating endoplasmic reticulum stress-induced apoptosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Diabetic nephropathy (DN) is by far the most common cause of end-stage renal disease (ESRD) in industrial countries, accounting for ~45% of all new ESRD cases in the United States. Grape seed proanthocyanidin extracts (GSPE) are powerful antioxidants, with an antioxidant ability 50-fold greater than that of vitamin E and 20-fold greater than that of vitamin C. The present study investigated whether GSPE can protect against streptozotocin (STZ)-induced DN and aimed to elucidate a possible mechanism. Male Sprague Dawley rats were randomly divided into three groups: Control group (N), diabetes mellitus group (DM) injected with 40 mg/kg STZ, and the GSPE treatment group (intragastric administration of 250 mg/kg/day GSPE for 16 weeks after diabetes was induced in the rats). Blood and kidney samples were collected after treatment. The renal pathological changes were determined with periodic acid-Schiff (PAS) staining, while the protein expression levels of glucose-regulated protein 78 (GRP78), phosphorylated-extracellular signal-regulated kinase (p-ERK) and Caspase-12 were determined by western blotting and immunohistochemical staining. Apoptosis was determined with a terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay. Compared with the DM group, the GSPE group had no significant changes in the blood urea nitrogen (BUN) level and serum creatinine (Scr) level, but showed a significant decline in the renal index (RI) level and 24-h urinary albumin level (P<0.05). The histopathology results indicated very little pathological damage in the GSPE group. Compared with the DM group, the GSPE group had a significantly reduced number of TUNEL-positive cells (P<0.05), and the GSPE group had an obvious reduction in the protein expression of GRP78, p-ERK, and Caspase-12 (P<0.05). In this study, the results indicated that GSPE can protect renal function and attenuate endoplasmic reticulum stress-induced apoptosis via the Caspase-12 pathway in STZ-induced DN.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening.

          The objective of the present study was to develop a rat model that replicates the natural history and metabolic characteristics of human type 2 diabetes and is also suitable for pharmacological screening. Male Sprague-Dawley rats (160-180 g) were divided into two groups and fed with commercially available normal pellet diet (NPD) (12% calories as fat) or in-house prepared high-fat diet (HFD) (58% calories as fat), respectively, for a period of 2 weeks. The HFD-fed rats exhibited significant increase in body weight, basal plasma glucose (PGL), insulin (PI), triglycerides (PTG) and total cholesterol (PTC) levels as compared to NPD-fed control rats. Besides, the HFD rats showed significant reduction in glucose disappearance rate (K-value) on intravenous insulin glucose tolerance test (IVIGTT). Hyperinsulinemia together with reduced glucose disappearance rate (K-value) suggested that the feeding of HFD-induced insulin resistance in rats. After 2 weeks of dietary manipulation, a subset of the rats from both groups was injected intraperitoneally with low dose of streptozotocin (STZ) (35 mg kg(-1)). Insulin-resistant HFD-fed rats developed frank hyperglycemia upon STZ injection that, however, caused only mild elevation in PGL in NPD-fed rats. Though there was significant reduction in PI level after STZ injection in HFD rats, the reduction observed was only to a level that was comparable with NPD-fed control rats. In addition, the levels of PTG and PTC were further accentuated after STZ treatment in HFD-fed rats. In contrast, STZ (35 mg kg(-1), i.p.) failed to significantly alter PI, PTG and PTC levels in NPD-fed rats. Thus, these fat-fed/STZ-treated rats simulate natural disease progression and metabolic characteristics typical of individuals at increased risk of developing type 2 diabetes because of insulin resistance and obesity. Further, the fat-fed/STZ-treated rats were found to be sensitive for glucose lowering effects of insulin sensitizing (pioglitazone) as well as insulinotropic (glipizide) agents. Besides, the effect of pioglitazone and glipizide on the plasma lipid parameters (PTG and PTC) was shown in these diabetic rats. The present study represents that the combination of HFD-fed and low-dose STZ-treated rat serves as an alternative animal model for type 2 diabetes simulating the human syndrome that is also suitable for testing anti-diabetic agents for the treatment of type 2 diabetes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A new rat model of type 2 diabetes: the fat-fed, streptozotocin-treated rat.

            This study was initiated to develop an animal model of type 2 diabetes in a non-obese, outbred rat strain that replicates the natural history and metabolic characteristics of the human syndrome and is suitable for pharmaceutical research. Male Sprague-Dawley rats (n = 31), 7 weeks old, were fed normal chow (12% of calories as fat), or high-fat diet (40% of calories as fat) for 2 weeks and then injected with streptozotocin (STZ, 50 mg/kg intravenously). Before STZ injection, fat-fed rats had similar glucose concentrations to chow-fed rats, but significantly higher insulin, free fatty acid (FFA), and triglyceride (TG) concentrations (P < .01 to .0001). Plasma insulin concentrations in response to oral glucose (2 g/kg) were increased 2-fold by fat feeding (P < .01), and adipocyte glucose clearance under maximal insulin stimulation was significantly reduced (P < .001), suggesting that fat feeding induced insulin resistance. STZ injection increased glucose (P < .05), insulin (P < .05), FFA (P < .05), and TG (P < .0001) concentrations in fat-fed rats (Fat-fed/STZ rats) compared with chow-fed, STZ-injected rats (Chow-fed/STZ rats). Fat-fed/STZ rats were not insulin deficient compared with normal chow-fed rats, but had hyperglycemia and a somewhat higher insulin response to an oral glucose challenge (both P < .05). In addition, insulin-stimulated adipocyte glucose clearance was reduced in Fat-fed/STZ rats compared with both chow-fed and Chow-fed/STZ rats (P < .001). Finally, Fat-fed/STZ rats were sensitive to the glucose lowering effects of metformin and troglitazone. In conclusion, Fat-fed/STZ rats provide a novel animal model for type 2 diabetes, simulates the human syndrome, and is suitable for the testing of antidiabetic compounds.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The pathogenesis of diabetic nephropathy.

              Between 20% and 40% of patients with diabetes ultimately develop diabetic nephropathy, which in the US is the most common cause of end-stage renal disease requiring dialysis. Diabetic nephropathy has several distinct phases of development and multiple mechanisms contribute to the development of the disease and its outcomes. This Review provides a summary of the latest published data dealing with these mechanisms; it focuses not only on candidate genes associated with susceptibility to diabetic nephropathy but also on alterations in various cytokines and their interaction with products of advanced glycation and oxidant stress. Additionally, the interactions between fibrotic and hemodynamic cytokines, such as transforming growth factor beta1 and angiotensin II, respectively, are discussed in the context of new information concerning nephropathy development. We touch on the expanding clinical data regarding markers of nephropathy, such as microalbuminuria, and put them into context; microalbuminuria reflects cardiovascular and not renal risk. If albuminuria levels continue to increase over time then nephropathy is present. Lastly, we look at advances being made to enable identification of genetically predisposed individuals.
                Bookmark

                Author and article information

                Journal
                Mol Med Rep
                Mol Med Rep
                Molecular Medicine Reports
                D.A. Spandidos
                1791-2997
                1791-3004
                August 2018
                06 June 2018
                06 June 2018
                : 18
                : 2
                : 1447-1454
                Affiliations
                [1 ]Department of Nephrology, Shandong University Qi Lu Hospital Qing-Dao, Qingdao, Shandong 266000, P.R. China
                [2 ]Department of Nephrology, Shandong University Qi Lu Hospital, Jinan, Shandong 250012, P.R. China
                [3 ]Ministry of Education Key Laboratory of Experimental Teratology and Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
                [4 ]Department of Ultrasound, Jinan Central Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
                [5 ]Department of Nephrology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
                [6 ]Department of Nephrology, Peking Union Medical College Hospital, Beijing 100000, P.R. China
                Author notes
                Correspondence to: Professor Xianhua Li, Department of Nephrology, Shandong University Qi Lu Hospital, 107 Wenhua Xi Road, Jinan, Shandong 250012, P.R. China, E-mail: lixianhua7075@ 123456sina.com
                [*]

                Contributed equally

                Article
                mmr-18-02-1447
                10.3892/mmr.2018.9140
                6072170
                29901130
                2171ee6b-6725-423f-81e5-b4f2549238f2
                Copyright: © Gao et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 21 November 2017
                : 11 May 2018
                Categories
                Articles

                grape seed proanthocyanidins,streptozotocin,diabetic nephropathy,endoplasmic reticulum stress,apoptosis

                Comments

                Comment on this article