14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The cardiac sodium-calcium exchanger NCX1 is a key player in the initiation and maintenance of a stable heart rhythm.

      Cardiovascular Research
      Animals, Arrhythmias, Cardiac, etiology, Calcium, metabolism, Heart Rate, Mice, Mice, Inbred C57BL, Myocardium, Sinoatrial Node, Sodium-Calcium Exchanger, physiology, Ventricular Remodeling

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The complex molecular mechanisms underlying spontaneous cardiac pacemaking are not fully understood. Recent findings point to a co-ordinated interplay between intracellular Ca(2+) cycling and plasma membrane-localized cation transport determining the origin and periodicity of pacemaker potentials. The sodium-calcium exchanger (NCX1) is a key sarcolemmal protein for the maintenance of calcium homeostasis in the heart. Here, we investigated the contribution of NCX1 to cardiac pacemaking. We used an inducible and sinoatrial node-specific Cre transgene to create micelacking NCX1 selectively in cells of the cardiac pacemaking and conduction system (cpNCX1KO). RT-PCR and immunolabeling experiments confirmed the precise tissue-specific and temporally controlled deletion. Ablation of NCX1 resulted in a progressive slowing of heart rate accompanied by severe arrhythmias. Isolated sinoatrial tissue strips displayed a significantly decreased and irregular contraction rate underpinning a disturbed intrinsic pacemaker activity. Mutant animals displayed a gradual increase in the heart-to-body weight ratio and developed ventricular dilatation; however, their ventricular contractile performance was not significantly affected. Pacemaker cells from cpNCX1KO showed no NCX1 activity in response to caffeine-induced Ca(2+) release, determined by Ca(2+) imaging. Regular spontaneous Ca(2+) discharges were frequently seen in control, but only sporadically in knockout (KO) cells. The majority of NCX1KO cells displayed an irregular and a significantly reduced frequency of spontaneous Ca(2+) signals. Furthermore, Ca(2+) transients measured during electrical field stimulation were of smaller magnitude and decelerated kinetics in KO cells. Our results establish NCX1 as a critical target for the proper function of cardiac pacemaking.

          Related collections

          Author and article information

          Comments

          Comment on this article