1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Visualizing Intramolecular Vibrational Redistribution in Cyclotrimethylene Trinitramine (RDX) Crystals by Multiplex Coherent Anti-Stokes Raman Scattering.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The femtosecond time-resolved multiplex coherent anti-Stokes Raman scattering (CARS) technique has been performed to investigate intramolecular vibrational redistribution (IVR) through vibrational couplings in 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) molecules. In the multiplex CARS experiment, the supercontinuum (SC) was used as broad-band Stokes light to coherently and collectively excite multiple vibrational modes, and quantum beats arising from vibrational couplings among these modes were observed. The IVR of RDX is visualized by a topological graph of these vibrational couplings, and with analysis of the topological graph, two vibrational modes, both of which are assigned to ring bending, are confirmed to have coupling interactions with most of the other vibrational modes and are considered to have a tendency of energy transfer with these vibrational modes. We suggest that the mode at 466 cm-1 is a portal of energy transfer from outside to inside of the RDX molecule and the mode at 672 cm-1 is an important transit point of energy transfer in the IVR.

          Related collections

          Author and article information

          Journal
          J Phys Chem A
          The journal of physical chemistry. A
          American Chemical Society (ACS)
          1520-5215
          1089-5639
          Apr 06 2017
          : 121
          : 13
          Affiliations
          [1 ] National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics , Mianyang 621900, People's Republic of China.
          Article
          10.1021/acs.jpca.7b00069
          28319388
          21894487-f15b-4d34-a7a5-d4e4f0948fa1
          History

          Comments

          Comment on this article