16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bone mineral density and body composition in girls with idiopathic central precocious puberty before and after treatment with a gonadotropin-releasing hormone agonist

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          OBJECTIVES:

          Idiopathic central precocious puberty and its postponement with a (gonadotropin-releasing hormone) GnRH agonist are complex conditions, the final effects of which on bone mass are difficult to define. We evaluated bone mass, body composition, and bone remodeling in two groups of girls with idiopathic central precocious puberty, namely one group that was assessed at diagnosis and a second group that was assessed three years after GnRH agonist treatment.

          METHODS:

          The precocious puberty diagnosis and precocious puberty treatment groups consisted of 12 girls matched for age and weight to corresponding control groups of 12 (CD) and 14 (CT) girls, respectively. Bone mineral density and body composition were assessed by dual X-ray absorptiometry. Lumbar spine bone mineral density was estimated after correction for bone age and the mathematical calculation of volumetric bone mineral density. CONEP: CAAE-0311.0.004.000-06.

          RESULTS:

          Lumbar spine bone mineral density was slightly increased in individuals diagnosed with precocious puberty compared with controls; however, after correction for bone age, this tendency disappeared (CD = -0.74±0.9 vs. precocious puberty diagnosis = -1.73±1.2). The bone mineral density values of girls in the precocious puberty treatment group did not differ from those observed in the CT group.

          CONCLUSION:

          There is an increase in bone mineral density in girls diagnosed with idiopathic central precocious puberty. Our data indicate that the increase in bone mineral density in girls with idiopathic central precocious puberty is insufficient to compensate for the marked advancement in bone age observed at diagnosis. GnRH agonist treatment seems to have no detrimental effect on bone mineral density.

          Related collections

          Most cited references92

          • Record: found
          • Abstract: found
          • Article: not found

          Osteocalcin differentially regulates beta cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice.

          The osteoblast-specific secreted molecule osteocalcin behaves as a hormone regulating glucose metabolism and fat mass in two mutant mouse strains. Here, we ask two questions: is the action of osteocalcin on beta cells and adipocytes elicited by the same concentrations of the molecule, and more importantly, does osteocalcin regulate energy metabolism in WT mice? Cell-based assays using isolated pancreatic islets, a beta cell line, and primary adipocytes showed that picomolar amounts of osteocalcin are sufficient to regulate the expression of the insulin genes and beta cell proliferation markers, whereas nanomolar amounts affect adiponectin and Pgc1alpha expression in white and brown adipocytes, respectively. In vivo the same difference exists in osteocalcin's ability to regulate glucose metabolism on the one hand and affect insulin sensitivity and fat mass on the other hand. Furthermore, we show that long-term treatment of WT mice with osteocalcin can significantly weaken the deleterious effect on body mass and glucose metabolism of gold thioglucose-induced hyperphagia and high-fat diet. These results establish in WT mice the importance of this novel molecular player in the regulation of glucose metabolism and fat mass and suggest that osteocalcin may be of value in the treatment of metabolic diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Aromatase deficiency in male and female siblings caused by a novel mutation and the physiological role of estrogens.

            The aromatase enzyme complex catalyzes the conversion of androgens to estrogens in a wide variety of tissues, including the ovary, testis, placenta, brain, and adipose tissue. Only a single human gene encoding aromatase P450 (CYP19) has been isolated; tissue-specific regulation is controlled in part by alternative promoters in a tissue-specific manner. We report a novel mutation in the CYP19 gene in a sister and brother. The 28-yr-old XX proband, followed since infancy, exhibited the cardinal features of the aromatase deficiency syndrome as recently defined. She had nonadrenal female pseudohermaphrodism at birth and underwent repair of the external genitalia, including a clitorectomy. At the age of puberty, she developed progressive signs of virilization, pubertal failure with no signs of estrogen action, hypergonadotropic hypogonadism, polycystic ovaries on pelvic sonography, and tall stature. The basal concentrations of plasma testosterone, androstenedione, and 17-hydroxyprogesterone were elevated, whereas plasma estradiol was low. Cyst fluid from the polycystic ovaries had a strikingly abnormal ratio of androstenedione and testosterone to estradiol and estrone. Hormone replacement therapy led to breast development, menses, resolution of ovarian cysts, and suppression of the elevated FSH and LH values. Her adult height is 177.6 cm (+2.5 SD). Her only sibling, an XY male, was studied at 24 yr of age. During both pregnancies, the mother exhibited signs of progressive virilization that regressed postpartum. The height of the brother was 204 cm (+3.7 SD) with eunuchoid skeletal proportions, and the weight was 135.1 kg (+2.1 SD). He was sexually fully mature and had macroorchidism. The plasma concentrations of testosterone (2015 ng/dL), 5 alpha-dihydrotestosterone (125 ng/dL), and androstenedione (335 ng/dL) were elevated; estradiol and estrone levels were less than 7 pg/mL. Plasma FSH and LH concentrations were more than 3 times the mean value. Plasma PRL was low; serum insulin-like growth factor I and GH-binding protein were normal. The bone age was 14 yr at a chronological age of 24 3/12 yr. Striking osteopenia was noted at the wrist. Bone mineral densitometric indexes of the lumbar spine (cancellous bone) and distal radius (cortical bone) were consistent with osteoporosis; the distal radius was -4.7 SD below the mean value for age- and sex-matched normal men; indexes of bone turnover were increased. Hyperinsulinemia, increased serum total and low density lipoprotein cholesterol, and triglycerides and decreased high density lipoprotein cholesterol were detected.(ABSTRACT TRUNCATED AT 400 WORDS)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Osteopenia in men with a history of delayed puberty.

              The effect of delayed puberty on peak bone mineral density in men is unknown. To determine whether such a delay reduces normal peak bone density and leads to osteopenia during adulthood, we measured radial bone mineral density by single-photon absorptiometry and spinal bone mineral density by dual-energy x-ray absorptiometry in 23 men who had a history of constitutionally delayed puberty and 21 men who underwent normal puberty. Their mean ages were 26 and 24 years, respectively. The groups were matched for other factors known to affect bone mass. The mean (+/- SD) radial bone mineral density was significantly lower in the men with a history of delayed puberty than in the normal men (0.73 +/- 0.07 vs. 0.80 +/- 0.05 g per square centimeter; P less than 0.0002). Spinal bone mineral density was also significantly lower in the men with delayed puberty than in the normal men (1.03 +/- 0.10 vs. 1.13 +/- 0.11 g per square centimeter; P less than 0.003). Radial bone density was at least 1 SD below the mean value for the normal men in 15 of the 23 men with a history of delayed puberty, and spinal bone density was similarly decreased in 10 of the 23. Adult men with a history of constitutionally delayed puberty have decreased radial and spinal bone mineral density. These findings suggest that the timing of puberty is an important determinant of peak bone density in men. Because the peak bone mineral density achieved during young adulthood is a major determinant of bone density in later life, men in whom puberty was delayed may be at increased risk for osteoporotic fractures when they are older.
                Bookmark

                Author and article information

                Journal
                Clinics (Sao Paulo)
                Clinics (Sao Paulo)
                Clinics
                Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo
                1807-5932
                1980-5322
                June 2012
                : 67
                : 6
                : 591-596
                Affiliations
                [I ]Universidade de São Paulo, School of Medicine of Ribeirão Preto, Department of Internal Medicine, Ribeirão Preto/SP, Brazil.
                [II ]Universidade de São Paulo, School of Medicine of Ribeirão Preto, Department of Pediatrics, Ribeirão Preto/SP, Brazil.
                Author notes

                Alessandri SB, Pereira FA and Vilella RA participated in sample collections and laboratory measurements. Anotinini SRR, Elias PCL and Martinelli CE were responsible for patient selection and the laboratory diagnostics for iCPP. Moreira AC, Castro M and Paula FJA were responsible for the study design and data analysis. Paula FJA wrote the manuscript, which was revised by all authors.

                E-mail: fjpaula@ 123456fmrp.usp.br Tel.: 55 16 3602-2563
                Article
                cln_67p591
                10.6061/clinics/2012(06)08
                3370310
                22760897
                218e8f0c-2256-4326-af70-69713a6e04c6
                Copyright © 2012 Hospital das Clínicas da FMUSP

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 24 January 2012
                : 27 February 2012
                : 27 February 2012
                Page count
                Pages: 6
                Categories
                Clinical Science

                Medicine
                bone density,precocious puberty,osteoporosis in children,gonadotropin-releasing hormone

                Comments

                Comment on this article