2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Oxygen sensing by ion channels and chemotransduction in single glomus cells

      research-article
      The Journal of General Physiology
      The Rockefeller University Press

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We have monitored cytosolic [Ca2+] and dopamine release in intact fura- 2-loaded glomus cells with microfluoroimetry and a polarized carbon fiber electrode. Exposure to low PO2 produced a rise of cytosolic [Ca2+] with two distinguishable phases: an initial period (with PO2 values between 150 and approximately 70 mm Hg) during which the increase of [Ca2+] is very small and never exceeds 150-200 nM, and a second phase (with PO2 below approximately 70 mm Hg) characterized by a sharp rise of cytosolic [Ca2+]. Secretion occurs once cytosolic [Ca2+] reaches a threshold value of 180 +/- 43 nM. The results demonstrate a characteristic relationship between PO2 and transmitter secretion at the cellular level that is comparable with the relation described for the input (O2 tension)output (afferent neural discharges) variables in the carotid body. Thus, the properties of single glomus cells can explain the sensory functions of the entire organ. In whole-cell, patch- clamped cells, we have found that in addition to O2-sensitive K+ channels, there are Ca2+ channels whose activity is also regulated by PO2. Ca2+ channel activity is inhibited by hpoxia, although in a strongly voltage-dependent manner. The average hypoxic inhibition of the calcium current in 30% +/- 10% at -20 mV but only 2% +/- 2% at +30 mV. The differential inhibition of K+ and Ca2+ channels by hypoxia helps to explain why the secretory response of the cells is displaced toward PO2 values (below approximately 70 mm Hg) within the range of those normally existing in arterial blood. These data provide a conceptual framework for understanding the cellular mechanisms of O2 chemotransduction in the carotid body.

          Related collections

          Author and article information

          Journal
          J Gen Physiol
          The Journal of General Physiology
          The Rockefeller University Press
          0022-1295
          1540-7748
          1 January 1996
          : 107
          : 1
          : 133-143
          Article
          96286627
          10.1085/jgp.107.1.133
          2219248
          8741735
          218ee82b-4d8a-4dd9-bef3-3f16b04fe524
          History
          Categories
          Articles

          Anatomy & Physiology
          Anatomy & Physiology

          Comments

          Comment on this article