19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Plastic animals in cages: behavioural flexibility and responses to captivity

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references113

          • Record: found
          • Abstract: found
          • Article: not found

          Behavioural reaction norms: animal personality meets individual plasticity

          Recent studies in the field of behavioural ecology have revealed intriguing variation in behaviour within single populations. Increasing evidence suggests that individual animals differ in their average level of behaviour displayed across a range of contexts (animal 'personality'), and in their responsiveness to environmental variation (plasticity), and that these phenomena can be considered complementary aspects of the individual phenotype. How should this complex variation be studied? Here, we outline how central ideas in behavioural ecology and quantitative genetics can be combined within a single framework based on the concept of 'behavioural reaction norms'. This integrative approach facilitates analysis of phenomena usually studied separately in terms of personality and plasticity, thereby enhancing understanding of their adaptive nature. Copyright 2009 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evolution and behavioural responses to human-induced rapid environmental change

            Almost all organisms live in environments that have been altered, to some degree, by human activities. Because behaviour mediates interactions between an individual and its environment, the ability of organisms to behave appropriately under these new conditions is crucial for determining their immediate success or failure in these modified environments. While hundreds of species are suffering dramatically from these environmental changes, others, such as urbanized and pest species, are doing better than ever. Our goal is to provide insights into explaining such variation. We first summarize the responses of some species to novel situations, including novel risks and resources, habitat loss/fragmentation, pollutants and climate change. Using a sensory ecology approach, we present a mechanistic framework for predicting variation in behavioural responses to environmental change, drawing from models of decision-making processes and an understanding of the selective background against which they evolved. Where immediate behavioural responses are inadequate, learning or evolutionary adaptation may prove useful, although these mechanisms are also constrained by evolutionary history. Although predicting the responses of species to environmental change is difficult, we highlight the need for a better understanding of the role of evolutionary history in shaping individuals’ responses to their environment and provide suggestion for future work.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Early growth conditions, phenotypic development and environmental change.

              Phenotypic development is the result of a complex interplay involving the organism's own genetic make-up and the environment it experiences during development. The latter encompasses not just the current environment, but also indirect, and sometimes lagged, components that result from environmental effects on its parents that are transmitted to their developing offspring in various ways and at various stages. These environmental effects can simply constrain development, for example, where poor maternal condition gives rise to poorly provisioned, low-quality offspring. However, it is also possible that environmental circumstances during development shape the offspring phenotype in such a way as to better prepare it for the environmental conditions it is most likely to encounter during its life. Studying the extent to which direct and indirect developmental responses to environmental effects are adaptive requires clear elucidation of hypotheses and careful experimental manipulations. In this paper, I outline how the different paradigms applied in this field relate to each other, the main predictions that they produce and the kinds of experimental data needed to distinguish among competing hypotheses. I focus on birds in particular, but the theories discussed are not taxon specific. Environmental influences on phenotypic development are likely to be mediated, in part at least, by endocrine systems. I examine evidence from mechanistic and functional avian studies and highlight the general areas where we lack key information.
                Bookmark

                Author and article information

                Journal
                Animal Behaviour
                Animal Behaviour
                Elsevier BV
                00033472
                May 2013
                May 2013
                : 85
                : 5
                : 1113-1126
                Article
                10.1016/j.anbehav.2013.02.002
                218f014d-8c1c-4c48-b7d7-6705af730842
                © 2013

                http://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article