24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Short-Chain Fatty Acid Acetate in Body Weight Control and Insulin Sensitivity

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The interplay of gut microbiota, host metabolism, and metabolic health has gained increased attention. Gut microbiota may play a regulatory role in gastrointestinal health, substrate metabolism, and peripheral tissues including adipose tissue, skeletal muscle, liver, and pancreas via its metabolites short-chain fatty acids (SCFA). Animal and human data demonstrated that, in particular, acetate beneficially affects host energy and substrate metabolism via secretion of the gut hormones like glucagon-like peptide-1 and peptide YY, which, thereby, affects appetite, via a reduction in whole-body lipolysis, systemic pro-inflammatory cytokine levels, and via an increase in energy expenditure and fat oxidation. Thus, potential therapies to increase gut microbial fermentation and acetate production have been under vigorous scientific scrutiny. In this review, the relevance of the colonically and systemically most abundant SCFA acetate and its effects on the previously mentioned tissues will be discussed in relation to body weight control and glucose homeostasis. We discuss in detail the differential effects of oral acetate administration (vinegar intake), colonic acetate infusions, acetogenic fiber, and acetogenic probiotic administrations as approaches to combat obesity and comorbidities. Notably, human data are scarce, which highlights the necessity for further human research to investigate acetate’s role in host physiology, metabolic, and cardiovascular health.

          Related collections

          Most cited references126

          • Record: found
          • Abstract: found
          • Article: not found

          Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation.

          Short chain fatty acids (SCFAs), including acetate, propionate, and butyrate, are produced at high concentration by bacteria in the gut and subsequently released in the bloodstream. Basal acetate concentrations in the blood (about 100 microm) can further increase to millimolar concentrations following alcohol intake. It was known previously that SCFAs can activate leukocytes, particularly neutrophils. In the present work, we have identified two previously orphan G protein-coupled receptors, GPR41 and GPR43, as receptors for SCFAs. Propionate was the most potent agonist for both GPR41 and GPR43. Acetate was more selective for GPR43, whereas butyrate and isobutyrate were more active on GPR41. The two receptors were coupled to inositol 1,4,5-trisphosphate formation, intracellular Ca2+ release, ERK1/2 activation, and inhibition of cAMP accumulation. They exhibited, however, a differential coupling to G proteins; GPR41 coupled exclusively though the Pertussis toxin-sensitive Gi/o family, whereas GPR43 displayed a dual coupling through Gi/o and Pertussis toxin-insensitive Gq protein families. The broad expression profile of GPR41 in a number of tissues does not allow us to infer clear hypotheses regarding its biological functions. In contrast, the highly selective expression of GPR43 in leukocytes, particularly polymorphonuclear cells, suggests a role in the recruitment of these cell populations toward sites of bacterial infection. The pharmacology of GPR43 matches indeed the effects of SCFAs on neutrophils, in terms of intracellular Ca2+ release and chemotaxis. Such a neutrophil-specific SCFA receptor is potentially involved in the development of a variety of diseases characterized by either excessive or inefficient neutrophil recruitment and activation, such as inflammatory bowel diseases or alcoholism-associated immune depression. GPR43 might therefore constitute a target allowing us to modulate immune responses in these pathological situations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gut microbial metabolites in obesity, NAFLD and T2DM

            Evidence is accumulating that the gut microbiome is involved in the aetiology of obesity and obesity-related complications such as nonalcoholic fatty liver disease (NAFLD), insulin resistance and type 2 diabetes mellitus (T2DM). The gut microbiota is able to ferment indigestible carbohydrates (for example, dietary fibre), thereby yielding important metabolites such as short-chain fatty acids and succinate. Numerous animal studies and a handful of human studies suggest a beneficial role of these metabolites in the prevention and treatment of obesity and its comorbidities. Interestingly, the more distal colonic microbiota primarily ferments peptides and proteins, as availability of fermentable fibre, the major energy source for the microbiota, is limited here. This proteolytic fermentation yields mainly harmful products such as ammonia, phenols and branched-chain fatty acids, which might be detrimental for host gut and metabolic health. Therefore, a switch from proteolytic to saccharolytic fermentation could be of major interest for the prevention and/or treatment of metabolic diseases. This Review focuses on the role of products derived from microbial carbohydrate and protein fermentation in relation to obesity and obesity-associated insulin resistance, T2DM and NAFLD, and discusses the mechanisms involved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: a study with relevance to inflammatory bowel disease.

              To compare the anti-inflammatory properties of butyrate with two other SCFAs, namely acetate and propionate, which have less well-documented effects on inflammation. The effect of SCFAs on cytokine release from human neutrophils was studied with ELISA. SCFA-dependent modulation of NF-kappaB reporter activity was assessed in the human colon adenocarcinoma cell line, Colo320DM. Finally, the effect of SCFAs on gene expression and cytokine release, measured with RT-PCR and ELISA, respectively, was studied in mouse colon organ cultures established from colitic mice. Acetate, propionate and butyrate at 30 mmol/L decreased LPS-stimulated TNFalpha release from neutrophils, without affecting IL-8 protein release. All SCFAs dose dependently inhibited NF-kappaB reporter activity in Colo320DM cells. Propionate dose-dependently suppressed IL-6 mRNA and protein release from colon organ cultures and comparative studies revealed that propionate and butyrate at 30 mmol/L caused a strong inhibition of immune-related gene expression, whereas acetate was less effective. A similar inhibition was achieved with the proteasome inhibitor MG-132, but not the p38 MAPK inhibitor SB203580. All SCFAs decreased IL-6 protein release from organ cultures. In the present study propionate and butyrate were equipotent, whereas acetate was less effective, at suppressing NF-kappaB reporter activity, immune-related gene expression and cytokine release in vitro. Our findings suggest that propionate and acetate, in addition to butyrate, could be useful in the treatment of inflammatory disorders, including IBD.
                Bookmark

                Author and article information

                Journal
                Nutrients
                Nutrients
                nutrients
                Nutrients
                MDPI
                2072-6643
                18 August 2019
                August 2019
                : 11
                : 8
                : 1943
                Affiliations
                Department of Human Biology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Universiteitssingel 50, P.O. Box 616, 6229 ER Maastricht, The Netherlands
                Author notes
                [* ]Correspondence: e.blaak@ 123456maastrichtuniversity.nl ; Tel.: +31-43-388-1621
                Author information
                https://orcid.org/0000-0003-0267-1097
                https://orcid.org/0000-0002-2496-3464
                Article
                nutrients-11-01943
                10.3390/nu11081943
                6723943
                31426593
                21a3030f-72af-40fa-9e92-daeee9ca2d42
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 08 July 2019
                : 15 August 2019
                Categories
                Review

                Nutrition & Dietetics
                acetate,dietary fiber,microbiota,obesity,type 2 diabetes
                Nutrition & Dietetics
                acetate, dietary fiber, microbiota, obesity, type 2 diabetes

                Comments

                Comment on this article