5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Microscopic Techniques for the Analysis of Micro and Nanostructures of Biopolymers and Their Derivatives

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Natural biopolymers, a class of materials extracted from renewable sources, is garnering interest due to growing concerns over environmental safety; biopolymers have the advantage of biocompatibility and biodegradability, an imperative requirement. The synthesis of nanoparticles and nanofibers from biopolymers provides a green platform relative to the conventional methods that use hazardous chemicals. However, it is challenging to characterize these nanoparticles and fibers due to the variation in size, shape, and morphology. In order to evaluate these properties, microscopic techniques such as optical microscopy, atomic force microscopy (AFM), and transmission electron microscopy (TEM) are essential. With the advent of new biopolymer systems, it is necessary to obtain insights into the fundamental structures of these systems to determine their structural, physical, and morphological properties, which play a vital role in defining their performance and applications. Microscopic techniques perform a decisive role in revealing intricate details, which assists in the appraisal of microstructure, surface morphology, chemical composition, and interfacial properties. This review highlights the significance of various microscopic techniques incorporating the literature details that help characterize biopolymers and their derivatives.

          Related collections

          Most cited references216

          • Record: found
          • Abstract: not found
          • Article: not found

          Atomic Force Microscope

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Physical and mechanical properties of PLA, and their functions in widespread applications - A comprehensive review.

            Poly(lactic acid) (PLA), so far, is the most extensively researched and utilized biodegradable aliphatic polyester in human history. Due to its merits, PLA is a leading biomaterial for numerous applications in medicine as well as in industry replacing conventional petrochemical-based polymers. The main purpose of this review is to elaborate the mechanical and physical properties that affect its stability, processability, degradation, PLA-other polymers immiscibility, aging and recyclability, and therefore its potential suitability to fulfill specific application requirements. This review also summarizes variations in these properties during PLA processing (i.e. thermal degradation and recyclability), biodegradation, packaging and sterilization, and aging (i.e. weathering and hygrothermal). In addition, we discuss up-to-date strategies for PLA properties improvements including components and plasticizer blending, nucleation agent addition, and PLA modifications and nanoformulations. Incorporating better understanding of the role of these properties with available improvement strategies is the key for successful utilization of PLA and its copolymers/composites/blends to maximize their fit with worldwide application needs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Current progress on bio-based polymers and their future trends

              This article reviews the recent trends, developments, and future applications of bio-based polymers produced from renewable resources. Bio-based polymers are attracting increased attention due to environmental concerns and the realization that global petroleum resources are finite. Bio-based polymers not only replace existing polymers in a number of applications but also provide new combinations of properties for new applications. A range of bio-based polymers are presented in this review, focusing on general methods of production, properties, and commercial applications. The review examines the technological and future challenges discussed in bringing these materials to a wide range of applications, together with potential solutions, as well as discusses the major industry players who are bringing these materials to the market. Electronic supplementary material The online version of this article (doi:10.1186/2194-0517-2-8) contains supplementary material, which is available to authorized users.
                Bookmark

                Author and article information

                Journal
                Polymers (Basel)
                Polymers (Basel)
                polymers
                Polymers
                MDPI
                2073-4360
                27 February 2020
                March 2020
                : 12
                : 3
                : 512
                Affiliations
                [1 ]Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technology and Innovation, Technical University of Liberec, 461 17 Liberec, Czech Republic; abhilash.venkateshaiah@ 123456tul.cz (A.V.); stanislaw.waclawek@ 123456tul.cz (S.W.)
                [2 ]IMT Lille Douai, Department of Polymers and Composites Technology and Mechanical Engineering (TPCIM), 941 rue Charles Bourseul, CS10838, F-59508 Douai, France
                [3 ]Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
                Author notes
                Author information
                https://orcid.org/0000-0002-0816-526X
                https://orcid.org/0000-0002-8430-8269
                https://orcid.org/0000-0002-7554-020X
                https://orcid.org/0000-0001-9731-6228
                Article
                polymers-12-00512
                10.3390/polym12030512
                7182842
                32120773
                21b777ef-f7bc-42b0-9c7e-9685153d4138
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 26 January 2020
                : 24 February 2020
                Categories
                Review

                biopolymers,microstructures,nanostructures,surface morphology,filler dispersion,chemical composition,optical microscopy,scanning electron microscopy,transmission electron microscopy,atomic force microscopy

                Comments

                Comment on this article