37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      KinasePhos: a web tool for identifying protein kinase-specific phosphorylation sites

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          KinasePhos is a novel web server for computationally identifying catalytic kinase-specific phosphorylation sites. The known phosphorylation sites from public domain data sources are categorized by their annotated protein kinases. Based on the profile hidden Markov model, computational models are learned from the kinase-specific groups of the phosphorylation sites. After evaluating the learned models, the model with highest accuracy was selected from each kinase-specific group, for use in a web-based prediction tool for identifying protein phosphorylation sites. Therefore, this work developed a kinase-specific phosphorylation site prediction tool with both high sensitivity and specificity. The prediction tool is freely available at http://KinasePhos.mbc.nctu.edu.tw/.

          Related collections

          Most cited references5

          • Record: found
          • Abstract: found
          • Article: not found

          Profile hidden Markov models.

          S. Eddy (1998)
          The recent literature on profile hidden Markov model (profile HMM) methods and software is reviewed. Profile HMMs turn a multiple sequence alignment into a position-specific scoring system suitable for searching databases for remotely homologous sequences. Profile HMM analyses complement standard pairwise comparison methods for large-scale sequence analysis. Several software implementations and two large libraries of profile HMMs of common protein domains are available. HMM methods performed comparably to threading methods in the CASP2 structure prediction exercise.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification of phosphorylation sites in protein kinase A substrates using artificial neural networks and mass spectrometry.

            Protein phosphorylation plays a key role in cell regulation and identification of phosphorylation sites is important for understanding their functional significance. Here, we present an artificial neural network algorithm: NetPhosK (http://www.cbs.dtu.dk/services/NetPhosK/) that predicts protein kinase A (PKA) phosphorylation sites. The neural network was trained with a positive set of 258 experimentally verified PKA phosphorylation sites. The predictions by NetPhosK were validated using four novel PKA substrates: Necdin, RFX5, En-2, and Wee 1. The four proteins were phosphorylated by PKA in vitro and 13 PKA phosphorylation sites were identified by mass spectrometry. NetPhosK was 100% sensitive and 41% specific in predicting PKA sites in the four proteins. These results demonstrate the potential of using integrated computational and experimental methods for detailed investigations of the phosphoproteome.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reduced bio basis function neural network for identification of protein phosphorylation sites: comparison with pattern recognition algorithms.

              Protein phosphorylation is a post-translational modification performed by a group of enzymes known as the protein kinases or phosphotransferases (Enzyme Commission classification 2.7). It is essential to the correct functioning of both proteins and cells, being involved with enzyme control, cell signalling and apoptosis. The major problem when attempting prediction of these sites is the broad substrate specificity of the enzymes. This study employs back-propagation neural networks (BPNNs), the decision tree algorithm C4.5 and the reduced bio-basis function neural network (rBBFNN) to predict phosphorylation sites. The aim is to compare prediction efficiency of the three algorithms for this problem, and examine knowledge extraction capability. All three algorithms are effective for phosphorylation site prediction. Results indicate that rBBFNN is the fastest and most sensitive of the algorithms. BPNN has the highest area under the ROC curve and is therefore the most robust, and C4.5 has the highest prediction accuracy. C4.5 also reveals the amino acid 2 residues upstream from the phosporylation site is important for serine/threonine phosphorylation, whilst the amino acid 3 residues upstream is important for tyrosine phosphorylation.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Research
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                01 July 2005
                01 July 2005
                27 June 2005
                : 33
                : Web Server issue
                : W226-W229
                Affiliations
                Department of Biological Science and Technology, Institute of Bioinformatics, National Chiao Tung University Hsin-Chu 300, Taiwan
                1Department of Life Science, National Central University Chung-Li 320, Taiwan
                2Department of Computer Science and Information Engineering, National Central University Chung-Li 320, Taiwan
                Author notes
                *To whom correspondence should be addressed. Tel: +886 3 5712121, ext. 56952; Fax: +886 3 5729288; Email: bryan@ 123456mail.nctu.edu.tw

                Correspondence may also be addressed to Jorng-Tzong Horng. Tel: +886 3 4227151, ext. 35307; Fax: +886 3 4222681; Email: horng@ 123456db.csie.ncu.edu.tw

                Article
                10.1093/nar/gki471
                1160232
                15980458
                21b98a82-e76a-4ce0-834e-de735aec347b
                © The Author 2005. Published by Oxford University Press. All rights reserved

                The online version of this article has been published under an open access model. Users are entitled to use, reproduce, disseminate, or display the open access version of this article for non-commercial purposes provided that: the original authorship is properly and fully attributed; the Journal and Oxford University Press are attributed as the original place of publication with the correct citation details given; if an article is subsequently reproduced or disseminated not in its entirety but only in part or as a derivative work this must be clearly indicated. For commercial re-use, please contact journals.permissions@ 123456oupjournals.org

                History
                : 13 February 2005
                : 15 April 2005
                : 15 April 2005
                Categories
                Article

                Genetics
                Genetics

                Comments

                Comment on this article