0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Cystic phenotype and chronic kidney disease in autosomal dominant Alport syndrome

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Background

          Autosomal dominant Alport Syndrome (ADAS), also known as thin basement membrane disease (TBMD), is caused by pathogenic variants in the COL4A3 and COL4A4 genes. A cystic phenotype has been described in some patients with TBMD, but no genetic studies have been performed. We conducted a genetic and radiologic investigation in a cohort of ADAS patients to analyze the prevalence of multicystic kidney disease (MKD) and its association with chronic kidney disease (CKD).

          Methods

          This was a retrospective single-center cohort study. Thirty-one patients showing pathogenic or likely pathogenic variants in COL4A3 or COL4A4 from a cohort of 79 patients with persistent microscopic hematuria were included. Mean follow-up was 9.4 ± 9.6 years. The primary objective of the study was to determine the prevalence of MKD in the cohort of ADAS patients. Secondary objectives were to determine risk factors associated with an estimated glomerular filtration rate (eGFR) <45 mL/min/1.73 m2 at the time of genetic and radiologic evaluation and to investigate the coexistence of other genetic abnormalities associated with familial hematuria and cystic kidney disease.

          Results

          MKD was found in 16 patients (52%). Mean number of cysts per kidney was 12.7 ± 5.5. No genetic abnormalities were found in a panel of 101 other genes related to familial hematuria, focal segmental glomerulosclerosis and cystic kidney disease. A greater number of patients with MKD had an eGFR <45 mL/min/1.73 m2 (63% vs 7%, P = .006) and more advanced CKD than patients without MKD. The annual rate of eGFR decline was greater in patients with MKD: –1.8 vs 0.06 mL/min/1.73 m2/year (P = .009). By multivariable linear regression analysis, the main determinants of eGFR change per year were time-averaged proteinuria (P = .002) and MKD (P = .02).

          Conclusion

          MKD is commonly found in ADAS and is associated with a worse kidney outcome. No pathogenic variants were found in genes other than COL4A3/COL4A4.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology

          The American College of Medical Genetics and Genomics (ACMG) previously developed guidance for the interpretation of sequence variants. 1 In the past decade, sequencing technology has evolved rapidly with the advent of high-throughput next generation sequencing. By adopting and leveraging next generation sequencing, clinical laboratories are now performing an ever increasing catalogue of genetic testing spanning genotyping, single genes, gene panels, exomes, genomes, transcriptomes and epigenetic assays for genetic disorders. By virtue of increased complexity, this paradigm shift in genetic testing has been accompanied by new challenges in sequence interpretation. In this context, the ACMG convened a workgroup in 2013 comprised of representatives from the ACMG, the Association for Molecular Pathology (AMP) and the College of American Pathologists (CAP) to revisit and revise the standards and guidelines for the interpretation of sequence variants. The group consisted of clinical laboratory directors and clinicians. This report represents expert opinion of the workgroup with input from ACMG, AMP and CAP stakeholders. These recommendations primarily apply to the breadth of genetic tests used in clinical laboratories including genotyping, single genes, panels, exomes and genomes. This report recommends the use of specific standard terminology: ‘pathogenic’, ‘likely pathogenic’, ‘uncertain significance’, ‘likely benign’, and ‘benign’ to describe variants identified in Mendelian disorders. Moreover, this recommendation describes a process for classification of variants into these five categories based on criteria using typical types of variant evidence (e.g. population data, computational data, functional data, segregation data, etc.). Because of the increased complexity of analysis and interpretation of clinical genetic testing described in this report, the ACMG strongly recommends that clinical molecular genetic testing should be performed in a CLIA-approved laboratory with results interpreted by a board-certified clinical molecular geneticist or molecular genetic pathologist or equivalent.
            • Record: found
            • Abstract: found
            • Article: not found

            Alport syndrome: a unified classification of genetic disorders of collagen IV α345: a position paper of the Alport Syndrome Classification Working Group

            Mutations in the genes COL4A3, COL4A4, and COL4A5 affect the synthesis, assembly, deposition, or function of the collagen IV α345 molecule, the major collagenous constituent of the mature mammalian glomerular basement membrane. These mutations are associated with a spectrum of nephropathy, from microscopic hematuria to progressive renal disease leading to ESRD, and with extrarenal manifestations such as sensorineural deafness and ocular anomalies. The existing nomenclature for these conditions is confusing and can delay institution of appropriate nephroprotective therapy. Herein we propose a new classification of genetic disorders of the collagen IV α345 molecule with the goal of improving renal outcomes through regular monitoring and early treatment.
              • Record: found
              • Abstract: found
              • Article: not found

              Standards and Guidelines for Validating Next-Generation Sequencing Bioinformatics Pipelines

              Bioinformatics pipelines are an integral component of next-generation sequencing (NGS). Processing raw sequence data to detect genomic alterations has significant impact on disease management and patient care. Because of the lack of published guidance, there is currently a high degree of variability in how members of the global molecular genetics and pathology community establish and validate bioinformatics pipelines. Improperly developed, validated, and/or monitored pipelines may generate inaccurate results that may have negative consequences for patient care. To address this unmet need, the Association of Molecular Pathology, with organizational representation from the College of American Pathologists and the American Medical Informatics Association, has developed a set of 17 best practice consensus recommendations for the validation of clinical NGS bioinformatics pipelines. Recommendations include practical guidance for laboratories regarding NGS bioinformatics pipeline design, development, and operation, with additional emphasis on the role of a properly trained and qualified molecular professional to achieve optimal NGS testing quality.

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Nephrology Dialysis Transplantation
                Oxford University Press (OUP)
                0931-0509
                1460-2385
                August 2024
                July 31 2024
                January 04 2024
                August 2024
                July 31 2024
                January 04 2024
                : 39
                : 8
                : 1288-1298
                Article
                10.1093/ndt/gfae002
                38178635
                21c64a91-cf94-414f-bcf5-2cefcee18f6d
                © 2024

                https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model

                History

                Comments

                Comment on this article

                Related Documents Log