15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Circadian factors BMAL1 and RORα control HIF-1α transcriptional activity in nucleus pulposus cells: implications in maintenance of intervertebral disc health

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          BMAL1 and RORα are major regulators of the circadian molecular oscillator. Since previous work in other cell types has shown cross talk between circadian rhythm genes and hypoxic signaling, we investigated the role of BMAL1 and RORα in controlling HIF-1-dependent transcriptional responses in NP cells that exist in the physiologically hypoxic intervertebral disc. HIF-1-dependent HRE reporter activity was further promoted by co-transfection with either BMAL1 or RORα. In addition, stable silencing of BMAL1 or inhibition of RORα activity resulted in decreased HRE activation. Inhibition of RORα also modulated HIF1α-TAD activity. Interestingly, immunoprecipitation studies showed no evidence of BMAL1, CLOCK or RORα binding to HIF-1α in NP cells. Noteworthy, stable silencing of BMAL1 as well as inhibition of RORα decreased expression of select HIF-1 target genes including VEGF, PFKFB3 and Eno1. To delineate if BMAL1 plays a role in maintenance of disc health, we studied the spinal phenotype of BMAL1-null mice. The lumbar discs of null mice evidenced decreased height, and several parameters associated with vertebral trabecular bone quality were also affected in nulls. In addition, null animals showed a higher ratio of cells to matrix in NP tissue and hyperplasia of the annulus fibrosus. Taken together, our results indicate that BMAL1 and RORα form a regulatory loop in the NP and control HIF-1 activity without direct interaction. Importantly, activities of these circadian rhythm molecules may play a role in the adaptation of NP cells to their unique niche.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Early aging and age-related pathologies in mice deficient in BMAL1, the core componentof the circadian clock.

          Mice deficient in the circadian transcription factor BMAL1 (brain and muscle ARNT-like protein) have impaired circadian behavior and demonstrate loss of rhythmicity in the expression of target genes. Here we report that Bmal1(-/-) mice have reduced lifespans and display various symptoms of premature aging including sarcopenia, cataracts, less subcutaneous fat, organ shrinkage, and others. The early aging phenotype correlates with increased levels of reactive oxygen species in some tissues of the Bmal1(-/- )animals. These findings, together with data on CLOCK/BMAL1-dependent control of stress responses, may provide a mechanistic explanation for the early onset of age-related pathologies in the absence of BMAL1.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Differential control of Bmal1 circadian transcription by REV-ERB and ROR nuclear receptors.

            Circadian rhythms result from feedback loops involving clock genes and their protein products. In mammals, 2 orphan nuclear receptors, REV-ERBalpha and RORalpha, play important roles in the transcription of the clock gene Bmal1. The authors now considerably extend these findings with the demonstration that all members of the REV-ERB (alpha and beta) and ROR (alpha, beta, and gamma) families repress and activate Bmal1 transcription, respectively. The authors further show that transcription of Bmal1 is the result of competition between REV-ERBs and RORs at their specific response elements (RORE). Moreover, they demonstrate that Reverb genes are similarly expressed in the thymus, skeletal muscle, and kidney, whereas Ror genes present distinct expression patterns. Thus, the results indicate that all members of the REV-ERB and ROR families are crucial components of the molecular circadian clock. Furthermore, their strikingly different patterns of expression in nervous and peripheral tissues provide important insights into functional differences between circadian clocks within the organism.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transcriptional regulation of endochondral ossification by HIF-2alpha during skeletal growth and osteoarthritis development.

              Chondrocyte hypertrophy followed by cartilage matrix degradation and vascular invasion, characterized by expression of type X collagen (COL10A1), matrix metalloproteinase-13 (MMP-13) and vascular endothelial growth factor (VEGF), respectively, are central steps of endochondral ossification during normal skeletal growth and osteoarthritis development. A COL10A1 promoter assay identified hypoxia-inducible factor-2alpha (HIF-2alpha, encoded by EPAS1) as the most potent transactivator of COL10A1. HIF-2alpha enhanced promoter activities of COL10A1, MMP13 and VEGFA through specific binding to the respective hypoxia-responsive elements. HIF-2alpha, independently of oxygen-dependent hydroxylation, was essential for endochondral ossification of cultured chondrocytes and embryonic skeletal growth in mice. HIF-2alpha expression was higher in osteoarthritic cartilages versus nondiseased cartilages of mice and humans. Epas1-heterozygous deficient mice showed resistance to osteoarthritis development, and a functional single nucleotide polymorphism (SNP) in the human EPAS1 gene was associated with knee osteoarthritis in a Japanese population. The EPAS1 promoter assay identified RELA, a nuclear factor-kappaB (NF-kappaB) family member, as a potent inducer of HIF-2alpha expression. Hence, HIF-2alpha is a central transactivator that targets several crucial genes for endochondral ossification and may represent a therapeutic target for osteoarthritis.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                26 April 2016
                31 March 2016
                : 7
                : 17
                : 23056-23071
                Affiliations
                1 Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, USA
                2 Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
                3 Department of Anatomy and Cellular Biology, Basic Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
                4 Program in Cell and Developmental Biology, Jefferson College of Biomedical Sciences, Thomas Jefferson University, Philadelphia, USA
                Author notes
                Correspondence to: Makarand V. Risbud, makarand.risbud@ 123456jefferson.edu
                Article
                8521
                10.18632/oncotarget.8521
                5029610
                27049729
                21c70c21-4127-4469-ade9-07e59753caae
                Copyright: © 2016 Suyama et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 9 December 2015
                : 21 March 2016
                Categories
                Research Paper: Pathology

                Oncology & Radiotherapy
                intervertebral disc,nucleus pulposus,hif-1,bmal1,rorα,pathology section
                Oncology & Radiotherapy
                intervertebral disc, nucleus pulposus, hif-1, bmal1, rorα, pathology section

                Comments

                Comment on this article