44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      High Density Lipoprotein and it’s Dysfunction

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Plasma high-density lipoprotein cholesterol(HDL-C) levels do not predict functionality and composition of high-density lipoprotein(HDL). Traditionally, keeping levels of low-density lipoprotein cholesterol(LDL-C) down and HDL-C up have been the goal of patients to prevent atherosclerosis that can lead to coronary vascular disease(CVD). People think about the HDL present in their cholesterol test, but not about its functional capability.

          Up to 65% of cardiovascular death cannot be prevented by putative LDL-C lowering agents. It well explains the strong interest in HDL increasing strategies. However, recent studies have questioned the good in using drugs to increase level of HDL. While raising HDL is a theoretically attractive target, the optimal approach remains uncertain. The attention has turned to the quality, rather than the quantity, of HDL-C. An alternative to elevations in HDL involves strategies to enhance HDL functionality.

          The situation poses an opportunity for clinical chemists to take the lead in the development and validation of such biomarkers. The best known function of HDL is the capacity to promote cellular cholesterol efflux from peripheral cells and deliver cholesterol to the liver for excretion, thereby playing a key role in reverse cholesterol transport (RCT). The functions of HDL that have recently attracted attention include anti-inflammatory and anti-oxidant activities. High antioxidant and anti-inflammatory activities of HDL are associated with protection from CVD.

          This review addresses the current state of knowledge regarding assays of HDL functions and their relationship to CVD. HDL as a therapeutic target is the new frontier with huge potential for positive public health implications.

          Related collections

          Most cited references123

          • Record: found
          • Abstract: not found
          • Article: not found

          Phospholipase A2 enzymes: physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            HDL and cardiovascular disease: atherogenic and atheroprotective mechanisms.

            The lipoprotein HDL has two important roles: first, it promotes reverse cholesterol transport, and second, it modulates inflammation. Epidemiological studies show that HDL-cholesterol levels are inversely correlated with the risk of cardiovascular events. However, many patients who experience a clinical event have normal, or even high, levels of HDL cholesterol. Measuring HDL-cholesterol levels provides information about the size of the HDL pool, but does not predict HDL composition or function. The main component of HDL, apolipoprotein A-I (apo A-I), is largely responsible for reverse cholesterol transport through the macrophage ATP-binding cassette transporter ABCA1. Apo A-I can be damaged by oxidative mechanisms, which render the protein less able to promote cholesterol efflux. HDL also contains a number of other proteins that are affected by the oxidative environment of the acute-phase response. Modification of the protein components of HDL can convert it from an anti-inflammatory to a proinflammatory particle. Small peptides that mimic some of the properties of apo A-I have been shown in preclinical models to improve HDL function and reduce atherosclerosis without altering HDL-cholesterol levels. Robust assays to evaluate the function of HDL are needed to supplement the measurement of HDL-cholesterol levels in the clinic. © 2011 Macmillan Publishers Limited. All rights reserved
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Generation and biological activities of oxidized phospholipids.

              Glycerophospholipids represent a common class of lipids critically important for integrity of cellular membranes. Oxidation of esterified unsaturated fatty acids dramatically changes biological activities of phospholipids. Apart from impairment of their structural function, oxidation makes oxidized phospholipids (OxPLs) markers of "modified-self" type that are recognized by soluble and cell-associated receptors of innate immunity, including scavenger receptors, natural (germ line-encoded) antibodies, and C-reactive protein, thus directing removal of senescent and apoptotic cells or oxidized lipoproteins. In addition, OxPLs acquire novel biological activities not characteristic of their unoxidized precursors, including the ability to regulate innate and adaptive immune responses. Effects of OxPLs described in vitro and in vivo suggest their potential relevance in different pathologies, including atherosclerosis, acute inflammation, lung injury, and many other conditions. This review summarizes current knowledge on the mechanisms of formation, structures, and biological activities of OxPLs. Furthermore, potential applications of OxPLs as disease biomarkers, as well as experimental therapies targeting OxPLs, are described, providing a broad overview of an emerging class of lipid mediators.
                Bookmark

                Author and article information

                Journal
                Open Biochem J
                Open Biochem J
                TOBIOCJ
                The Open Biochemistry Journal
                Bentham Open
                1874-091X
                27 July 2012
                2012
                : 6
                : 78-93
                Affiliations
                [1 ]Antalya Public Health Center of Ministry of Health, Antalya, Turkey
                [2 ]Central Laboratories of Antalya Education and Research Hospital of Ministry of Health, Antalya, Turkey
                Author notes
                [* ]Address correspondence to this author at the Antalya Education and Re-search Hospital, Clinical Biochemistry Central Laboratory Ministry of Health, 07050, Antalya, Turkey; Tel: 00905053578305; Fax: 00902422494462; E-mail: necatyilmaz@ 123456hotmail.com
                Article
                TOBIOCJ-6-78
                10.2174/1874091X01206010078
                3414806
                22888373
                21c8ae5a-82df-403c-9e33-939e2c8e593b
                © Eren et al.; Licensee Bentham Open.

                This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

                History
                : 10 March 2012
                : 18 April 2012
                : 24 April 2012
                Categories
                Article

                Biochemistry
                hdl proteins,hdl subtypes.,hdl dysfunction,hdl functionality,high density lipoprotein,hdl
                Biochemistry
                hdl proteins, hdl subtypes., hdl dysfunction, hdl functionality, high density lipoprotein, hdl

                Comments

                Comment on this article