+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Beauvericin, a Bioactive Compound Produced by Fungi: A Short Review

      , *
      beauvericin, bioactive compound, antibiotic, mycotoxin, Fusarium spp

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Beauvericin is a cyclic hexadepsipeptide mycotoxin, which has insecticidal, antimicrobial, antiviral and cytotoxic activities. It is a potential agent for pesticides and medicines. This paper reviews the bioactivity, fermentation and biosynthesis of the fungal product beauvericin.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Emerging fusarium-mycotoxins fusaproliferin, beauvericin, enniatins, and moniliformin: a review.

          The contamination of foods and feed with mycotoxins is a commonly known problem. Intense investigations have been conducted to study the occurrence, toxicity, and recently also the prevention and detoxification strategies of mycotoxins in human and animal food chains. Most of the studies have emphasized on "traditional" mycotoxins, such as aflatoxins, ochratoxin A, and trichothecenes. However, one of the most common grain-contaminating genus of fungi, Fusarium spp., is also capable of producing other toxic secondary metabolites - the so-called emerging mycotoxins such as fusaproliferin, beauvericin, enniatins, and moniliformin. So far, only limited data is available on these metabolites. This is not only due to their late recognition but especially the late understanding of their role as mycotoxins. This paper summarizes the existing data on the chemistry, analytical techniques, biosynthesis, production, toxicity, and occurrence data on fusaproliferin, beauvericin, enniatins, and moniliformin. Based on the available studies, attention should be paid to the studies on the distinct significance of these compounds in the human and animal food chains.
            • Record: found
            • Abstract: found
            • Article: not found

            High-throughput synergy screening identifies microbial metabolites as combination agents for the treatment of fungal infections.

            The high mortality rate of immunocompromised patients with fungal infections and the limited availability of highly efficacious and safe agents demand the development of new antifungal therapeutics. To rapidly discover such agents, we developed a high-throughput synergy screening (HTSS) strategy for novel microbial natural products. Specifically, a microbial natural product library was screened for hits that synergize the effect of a low dosage of ketoconazole (KTC) that alone shows little detectable fungicidal activity. Through screening of approximately 20,000 microbial extracts, 12 hits were identified with broad-spectrum antifungal activity. Seven of them showed little cytotoxicity against human hepatoma cells. Fractionation of the active extracts revealed beauvericin (BEA) as the most potent component, because it dramatically synergized KTC activity against diverse fungal pathogens by a checkerboard assay. Significantly, in our immunocompromised mouse model, combinations of BEA (0.5 mg/kg) and KTC (0.5 mg/kg) prolonged survival of the host infected with Candida parapsilosis and reduced fungal colony counts in animal organs including kidneys, lungs, and brains. Such an effect was not achieved even with the high dose of 50 mg/kg KTC. These data support synergism between BEA and KTC and thereby a prospective strategy for antifungal therapy.
              • Record: found
              • Abstract: found
              • Article: not found

              Colonization of corn, Zea mays, by the entomopathogenic fungus Beauveria bassiana.

              Light and electron microscopy were used to describe the mode of penetration by the entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin into corn, Zea mays L. After inoculation with a foliar spray of conidia, germinating hyphae grew randomly across the leaf surface. Often a germ tube formed from a conidium and elongated only a short distance before terminating its growth. Not all developing hyphae on the leaf surface penetrated the cuticle. However, when penetration did occur, the penetration site(s) was randomly located, indicating that B. bassiana does not require specific topographic signals at an appropriate entry site as do some phytopathogenic fungi. Long hyphal structures were observed to follow the leaf apoplast in any direction from the point of penetration. A few hyphae were observed within xylem elements. Because vascular bundles are interconnected throughout the corn plant, this may explain how B. bassiana travels within the plant and ultimately provides overall insecticidal protection. Virulency bioassays demonstrate that B. bassiana does not lose virulence toward the European corn borer, Ostrinia nubilalis (Hübner), once it colonizes corn. This endophytic relationship between an entomopathogenic fungus and a plant suggests possibilities for biological control, including the use of indigenous fungal inocula as insecticides.

                Author and article information

                24 February 2012
                March 2012
                : 17
                : 3
                : 2367-2377
                College of Agricultural Resource and Environment, Heilongjiang University, Harbin 150080, China
                Author notes
                [* ] Author to whom correspondence should be addressed; Email: xulijiancau@ 123456gmail.com ; Tel.: +86-136-9451-8965.
                © 2012 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                : 21 January 2012
                : 15 February 2012
                : 17 February 2012

                beauvericin,bioactive compound,antibiotic,mycotoxin,fusarium spp


                Comment on this article