5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Long-circulating, pH-sensitive liposomes versus long-circulating, non-pH-sensitive liposomes as a delivery system for tumor identification.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bombesin (BBN) is a tetradecapeptide that binds specifically to gastrin-releasing peptide receptors in humans. Several forms of cancer, including lung, prostate, breast, and colon over-express receptors for bombesin-like peptides. Therefore, radiolabeled bombesin analogs might be useful for tumor identification. Nevertheless, it is well known that higher tumor uptake can yield images in higher quality. Hence, drug delivery systems, such as liposomes, can be used to achieve a higher concentration of radiotracer in tumor site, and also improve the radiotracer stability, since peptides can suffer easily degradation in vivo by natural plasma and tissue peptides. In this paper, we prepared long-circulating, pH-sensitive liposomes and long-circulation, non-pH sensitive liposomes. Both formulations were able to encapsulate the radiolabeled bombesin derivative (99mTc-BBN(7_14)), and also showing high in vitro stability. Biodistribution studies were performed in Ehrlich tumor bearing-mice to compare the ability of pH-sensitive and non-pH sensitive liposomes to deliver 99mTc-BBN(7_14) to tumor site. Results showed higher tumor uptake (2-fold) when pH-sensitive liposomes were used, suggesting that these vesicles can facilitate the access to the tumor by releasing the diagnostic agent into the ideal area. As a result, tumor-to-muscle ratio achieved with pH-sensitive liposomes was higher than that obtained with non-pH-sensitive formulation. In addition, scintigraphic images for pH-sensitive liposomes showed evident tumor uptake, corroborating with biodistribution data. Therefore, the results presented in this paper suggest that pH-sensitive liposomes are able to deliver more efficiently the radiolabeled bombesin analog. This finding poses a new possibility to improve images quality, since the tumor-to-muscle ratio was strongly enhanced.

          Related collections

          Author and article information

          Journal
          J Biomed Nanotechnol
          Journal of biomedical nanotechnology
          1550-7033
          1550-7033
          Sep 2013
          : 9
          : 9
          Affiliations
          [1 ] Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. AntOnio Carlos, 6627, 31279-901, Belo Horizonte, Minas Gerais, Brazil.
          Article
          10.1166/jbn.2013.1649
          23980511
          21d25a99-a636-4082-9738-5538ea91ba35
          History

          Comments

          Comment on this article