20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Recent updates in cancer immunotherapy: a comprehensive review and perspective of the 2018 China Cancer Immunotherapy Workshop in Beijing

      review-article
      1 , 2 , , 2 , 1 , 2 , 3
      Journal of Hematology & Oncology
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The immune system is the hard-wired host defense mechanism against pathogens as well as cancer. Five years ago, we pondered the question if the era of cancer immunotherapy was upon us (Li et al., Exp Hem Oncol 2013). Exciting progresses have been made at all fronts since then, including (1) sweeping approval of six agents by the US Food and Drug Administration (FDA) to block the PD-1/PD-L1 pathway for treatment of 13 cancer types; (2) a paradigm shifting indication of PD-1 and CTLA4 blockers for the management of a broad class of cancers with DNA mismatch repair defect, the first-ever tissue agnostic approval of cancer drugs; (3) real world practice of adoptive T cell therapy with two CD19-directed chimeric antigen receptor T cell products (CAR-T) for relapsed and/or refractory B cell malignancies including acute lymphoid leukemia and diffuse large B cell lymphoma, signaling the birth of a field now known as synthetic immunology; (4) the award of 2018 Nobel Prize in Physiology and Medicine from the Nobel Committee to Tasuku Honjo and James Allison “for their discovery of cancer medicine by inhibition of negative immune regulation” ( www.nobelprize.org/prizes/medicine/2018); and (5) the emerging new concept of normalizing rather than amplifying anti-tumor immunity for guiding the next wave of revolution in the field of immuno-oncology (IO) (Sanmamed and Chen, Cell 2018).

          This article will highlight the significant developments of immune-oncology as of October 2018. The US FDA approved indications of all seven immune checkpoint blockers, and two CD19-directed CAR-T products are tabulated for easy references. We organized our discussion into the following sections: introduction, cell therapy, emerging immunotherapeutic strategies, expediting oncology drug development in an era of breakthrough therapies, new concepts in cancer immunology and immunotherapy, and concluding remarks. Many of these topics were covered by the 2018 China Cancer Immunotherapy Workshop in Beijing, the fourth annual conference co-organized by the Chinese American Hematologist and Oncologist Network (CAHON), China FDA (CFDA; now known as China National Medical Product Administration (NMPA)), and the Tsinghua University. We significantly expanded our discussion of important IO developments beyond what were covered in the conference, and proposed a new Three Rs conceptual framework for cancer immunotherapy, which is to reverse tolerance, rejuvenate the immune system, and restore immune homeostasis. We conclude that the future of immuno-oncology as a distinct discipline of cancer medicine has arrived.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Regulatory T cells in cancer immunotherapy

          FOXP3-expressing regulatory T (Treg) cells, which suppress aberrant immune response against self-antigens, also suppress anti-tumor immune response. Infiltration of a large number of Treg cells into tumor tissues is often associated with poor prognosis. There is accumulating evidence that the removal of Treg cells is able to evoke and enhance anti-tumor immune response. However, systemic depletion of Treg cells may concurrently elicit deleterious autoimmunity. One strategy for evoking effective tumor immunity without autoimmunity is to specifically target terminally differentiated effector Treg cells rather than all FOXP3+ T cells, because effector Treg cells are the predominant cell type in tumor tissues. Various cell surface molecules, including chemokine receptors such as CCR4, that are specifically expressed by effector Treg cells can be the candidates for depleting effector Treg cells by specific cell-depleting monoclonal antibodies. In addition, other immunological characteristics of effector Treg cells, such as their high expression of CTLA-4, active proliferation, and apoptosis-prone tendency, can be exploited to control specifically their functions. For example, anti-CTLA-4 antibody may kill effector Treg cells or attenuate their suppressive activity. It is hoped that combination of Treg-cell targeting (e.g., by reducing Treg cells or attenuating their suppressive activity in tumor tissues) with the activation of tumor-specific effector T cells (e.g., by cancer vaccine or immune checkpoint blockade) will make the current cancer immunotherapy more effective.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            PD-1 Blockade with Cemiplimab in Advanced Cutaneous Squamous-Cell Carcinoma

            No systemic therapies have been approved for the treatment of advanced cutaneous squamous-cell carcinoma. This cancer may be responsive to immune therapy, because the mutation burden of the tumor is high and the disease risk is strongly associated with immunosuppression. In the dose-escalation portion of the phase 1 study of cemiplimab, a deep and durable response was observed in a patient with metastatic cutaneous squamous-cell carcinoma.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              IDO in the Tumor Microenvironment: Inflammation, Counter-Regulation, and Tolerance.

              Indoleamine 2,3-dioxygenase (IDO) has immunoregulatory roles associated with tryptophan metabolism. These include counter-regulation (controlling inflammation) and acquired tolerance in T cells. Recent findings reveal that IDO can be triggered by innate responses during tumorigenesis, and also by attempted T cell activation, either spontaneous or due to immunotherapy. Here we review the current understanding of mechanisms by which IDO participates in the control of inflammation and in peripheral tolerance. Focusing on the tumor microenvironment, we examine the role of IDO in response to apoptotic cells and the impact of IDO on Treg cell function. We discuss how the counter-regulatory and tolerogenic functions of IDO can be targeted for cancer immunotherapy and present an overview of the current clinical progress in this area.
                Bookmark

                Author and article information

                Contributors
                zihai@musc.edu
                Journal
                J Hematol Oncol
                J Hematol Oncol
                Journal of Hematology & Oncology
                BioMed Central (London )
                1756-8722
                21 December 2018
                21 December 2018
                2018
                : 11
                : 142
                Affiliations
                [1 ]ISNI 0000 0001 2189 3475, GRID grid.259828.c, Hollings Cancer Center, , Medical University of South Carolina, ; Charleston, SC 29425 USA
                [2 ]Chinese American Hematologist and Oncologist Network, New York, NY USA
                [3 ]ISNI 0000 0001 0728 151X, GRID grid.260917.b, New York Medical College, ; New York, NY USA
                Article
                684
                10.1186/s13045-018-0684-3
                6303854
                30577797
                21d2b57a-e043-4845-bbb2-24eb0ce9a289
                © The Author(s). 2018

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 16 November 2018
                : 29 November 2018
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100000054, National Cancer Institute;
                Award ID: P01CA186866
                Award Recipient :
                Categories
                Review
                Custom metadata
                © The Author(s) 2018

                Oncology & Radiotherapy
                Oncology & Radiotherapy

                Comments

                Comment on this article