6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Simvastatin reduces VEGF and NO levels in acute stages of experimental traumatic brain injury.

      Neurological Sciences
      Acute Disease, Animals, Anticholesteremic Agents, therapeutic use, Brain Injuries, blood, drug therapy, pathology, Male, Nitric Oxide, Rats, Rats, Wistar, Simvastatin, Vascular Endothelial Growth Factor A

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study was undertaken to evaluate the effect of simvastatin, a cholesterol-lowering agent, on vascular endothelial growth factors (VEGFs), nitric oxide (NO) levels and neuroprotection, in rats with experimentally induced traumatic brain injury (TBI). Forty Wistar albino rats were categorized into four groups: sham operated (S), trauma (T), trauma + vehicle (T + V) and trauma + simvastatin (T + S). The T, T + V and T + S groups were subjected to TBI. The T + V group was administered vehicle [ethanol:saline (1/2)] and the T + S group was administered 1 mg/kg of simvastatin 3 h after the injury insult. Blood and brain tissue specimens were obtained 24 h after the trauma to measure VEGFs and NO levels and perform histopathological examinations. The histopathological injury scores of brain tissues were significantly higher in the T group, and simvastatin significantly prevented brain injury in the T + S group. In the T group, significant increases of VEGF levels in serum and brain tissues were noted, which were prevented with simvastatin treatment in the T + S group. The markedly high levels of NO in brain tissues of the T group were decreased by simvastatin treatment in the T + S group. It can be concluded that, as evidenced by histopathological findings, simvastatin treatment improves neuropathology in acute stages of TBI.

          Related collections

          Author and article information

          Comments

          Comment on this article