78
views
0
recommends
+1 Recommend
0 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A Genomic Approach to Identify Regulatory Nodes in the Transcriptional Network of Systemic Acquired Resistance in Plants

      research-article
      ¤ , , *
      PLoS Pathogens
      Public Library of Science

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Many biological processes are controlled by intricate networks of transcriptional regulators. With the development of microarray technology, transcriptional changes can be examined at the whole-genome level. However, such analysis often lacks information on the hierarchical relationship between components of a given system. Systemic acquired resistance (SAR) is an inducible plant defense response involving a cascade of transcriptional events induced by salicylic acid through the transcription cofactor NPR1. To identify additional regulatory nodes in the SAR network, we performed microarray analysis on Arabidopsis plants expressing the NPR1-GR (glucocorticoid receptor) fusion protein. Since nuclear translocation of NPR1-GR requires dexamethasone, we were able to control NPR1-dependent transcription and identify direct transcriptional targets of NPR1. We show that NPR1 directly upregulates the expression of eight WRKY transcription factor genes. This large family of 74 transcription factors has been implicated in various defense responses, but no specific WRKY factor has been placed in the SAR network. Identification of NPR1-regulated WRKY factors allowed us to perform in-depth genetic analysis on a small number of WRKY factors and test well-defined phenotypes of single and double mutants associated with NPR1. Among these WRKY factors we found both positive and negative regulators of SAR. This genomics-directed approach unambiguously positioned five WRKY factors in the complex transcriptional regulatory network of SAR. Our work not only discovered new transcription regulatory components in the signaling network of SAR but also demonstrated that functional studies of large gene families have to take into consideration sequence similarity as well as the expression patterns of the candidates.

          Synopsis

          Many biological processes are controlled by intricate regulatory networks of gene expression. Identifying the regulatory nodes in these networks and understanding the hierarchical relationship between them are vital to our understanding of biological systems. However, this task is frequently hampered by the intrinsic complexity of these processes. Here, the authors used a controlled transcriptional profiling strategy to a plant immune response called systemic acquired resistance to study the transcriptional events one at a time. Systemic acquired resistance is activated through the induction of thousands of genes by the transcriptional regulator protein NPR1. The authors found that downstream of NPR1 are several regulatory nodes comprised of members from a large family of transcriptional factors. Disrupting these regulatory nodes compromised various functions assigned to NPR1, providing the information needed to construct a gene regulation network.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          DAVID: Database for Annotation, Visualization, and Integrated Discovery.

          Functional annotation of differentially expressed genes is a necessary and critical step in the analysis of microarray data. The distributed nature of biological knowledge frequently requires researchers to navigate through numerous web-accessible databases gathering information one gene at a time. A more judicious approach is to provide query-based access to an integrated database that disseminates biologically rich information across large datasets and displays graphic summaries of functional information. Database for Annotation, Visualization, and Integrated Discovery (DAVID; http://www.david.niaid.nih.gov) addresses this need via four web-based analysis modules: 1) Annotation Tool - rapidly appends descriptive data from several public databases to lists of genes; 2) GoCharts - assigns genes to Gene Ontology functional categories based on user selected classifications and term specificity level; 3) KeggCharts - assigns genes to KEGG metabolic processes and enables users to view genes in the context of biochemical pathway maps; and 4) DomainCharts - groups genes according to PFAM conserved protein domains. Analysis results and graphical displays remain dynamically linked to primary data and external data repositories, thereby furnishing in-depth as well as broad-based data coverage. The functionality provided by DAVID accelerates the analysis of genome-scale datasets by facilitating the transition from data collection to biological meaning.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Isochorismate synthase is required to synthesize salicylic acid for plant defence.

            Salicylic acid (SA) mediates plant defences against pathogens, accumulating in both infected and distal leaves in response to pathogen attack. Pathogenesis-related gene expression and the synthesis of defensive compounds associated with both local and systemic acquired resistance (LAR and SAR) in plants require SA. In Arabidopsis, exogenous application of SA suffices to establish SAR, resulting in enhanced resistance to a variety of pathogens. However, despite its importance in plant defence against pathogens, SA biosynthesis is not well defined. Previous work has suggested that plants synthesize SA from phenylalanine; however, SA could still be produced when this pathway was inhibited, and the specific activity of radiolabelled SA in feeding experiments was often lower than expected. Some bacteria such as Pseudomonas aeruginosa synthesize SA using isochorismate synthase (ICS) and pyruvate lyase. Here we show, by cloning and characterizing an Arabidopsis defence-related gene (SID2) defined by mutation, that SA is synthesized from chorismate by means of ICS, and that SA made by this pathway is required for LAR and SAR responses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The transcriptome of Arabidopsis thaliana during systemic acquired resistance.

              Infected plants undergo transcriptional reprogramming during initiation of both local defence and systemic acquired resistance (SAR). We monitored gene-expression changes in Arabidopsis thaliana under 14 different SAR-inducing or SAR-repressing conditions using a DNA microarray representing approximately 25-30% of all A. thaliana genes. We derived groups of genes with common regulation patterns, or regulons. The regulon containing PR-1, a reliable marker gene for SAR in A. thaliana, contains known PR genes and novel genes likely to function during SAR and disease resistance. We identified a common promoter element in genes of this regulon that binds members of a plant-specific transcription factor family. Our results extend expression profiling to definition of regulatory networks and gene discovery in plants.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                ppat
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                November 2006
                10 November 2006
                : 2
                : 11
                : e123
                Affiliations
                [1]Developmental, Cell and Molecular Biology Group, Department of Biology, Duke University, Durham, North Carolina, United States of America
                University of North Carolina, United States of America
                Author notes
                * To whom correspondence should be addressed. E-mail: xdong@ 123456duke.edu
                Article
                06-PLPA-RA-0346R1 plpa-02-11-02
                10.1371/journal.ppat.0020123
                1635530
                17096590
                21da6ecc-1ade-41d7-91f7-ff7673117386
                Copyright: © 2006 Wang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 30 August 2006
                : 4 October 2006
                Page count
                Pages: 9
                Categories
                Research Article
                Plant Science
                Genetics/Genomics
                Genetics/Gene Discovery
                Genetics/Gene Function
                Genetics/Functional Genomics
                Genetics/Gene Expression
                Eukaryotes
                Arabidopsis
                Custom metadata
                Wang D, Amornsiripanitch N, Dong X (2006) A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants. PLoS Pathog 2(11): e123. doi: 10.1371/journal.ppat.0020123

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article